STM32开发中使用C语言实现IIC驱动

发布者:EternalBliss最新更新时间:2023-09-19 来源: elecfans关键字:STM32开发  C语言  IIC驱动 手机看文章 扫描二维码
随时随地手机看文章

简述

IIC(Inter-Integrated Circuit)其实是IICBus简称,它是一种串行通信总线,使用多主从架构,在STM32开发中经常见到。


使用面向对象的编程思想封装IIC驱动,将IIC的属性和操作封装成一个库,在需要创建一个IIC设备时只需要实例化一个IIC对象即可,本文是基于STM32和HAL库做进一步封装的。


底层驱动方法不重要,封装的思想很重要。在完成对IIC驱动的封装之后借助继承特性实现AT24C64存储器的驱动开发,仍使用面向对象的思想封装AT24C64驱动。


IIC驱动面向对象封装

iic.h头文件主要是类模板的定义,具体如下:

//定义IIC类typedef struct IIC_Type{ //属性 GPIO_TypeDef *GPIOx_SCL; //GPIO_SCL所属的GPIO组(如:GPIOA) GPIO_TypeDef *GPIOx_SDA; //GPIO_SDA所属的GPIO组(如:GPIOA) uint32_t GPIO_SCL; //GPIO_SCL的IO引脚(如:GPIO_PIN_0) uint32_t GPIO_SDA; //GPIO_SDA的IO引脚(如:GPIO_PIN_0) //操作 void (*IIC_Init)(const struct IIC_Type*); //IIC_Init void (*IIC_Start)(const struct IIC_Type*); //IIC_Start void (*IIC_Stop)(const struct IIC_Type*); //IIC_Stop uint8_t (*IIC_Wait_Ack)(const struct IIC_Type*); //IIC_Wait_ack,返回wait失败或是成功 void (*IIC_Ack)(const struct IIC_Type*); //IIC_Ack,IIC发送ACK信号 void (*IIC_NAck)(const struct IIC_Type*); //IIC_NAck,IIC发送NACK信号 void (*IIC_Send_Byte)(const struct IIC_Type*,uint8_t); //IIC_Send_Byte,入口参数为要发送的字节 uint8_t (*IIC_Read_Byte)(const struct IIC_Type*,uint8_t); //IIC_Send_Byte,入口参数为是否要发送ACK信号 void (*delay_us)(uint32_t); //us延时}IIC_TypeDef;

iic.c源文件主要是类模板具体操作函数的实现,具体如下:

//设置SDA为输入模式static void SDA_IN(const struct IIC_Type* IIC_Type_t){ uint8_t io_num = 0; //定义io Num号 switch(IIC_Type_t-》GPIO_SDA) { case GPIO_PIN_0: io_num = 0; break; case GPIO_PIN_1: io_num = 1; break; case GPIO_PIN_2: io_num = 2; break; case GPIO_PIN_3: io_num = 3; break; case GPIO_PIN_4: io_num = 4; break; case GPIO_PIN_5: io_num = 5; break; case GPIO_PIN_6: io_num = 6; break; case GPIO_PIN_7: io_num = 7; break; case GPIO_PIN_8: io_num = 8; break; case GPIO_PIN_9: io_num = 9; break; case GPIO_PIN_10: io_num = 10; break; case GPIO_PIN_11: io_num = 11; break; case GPIO_PIN_12: io_num = 12; break; case GPIO_PIN_13: io_num = 13; break; case GPIO_PIN_14: io_num = 14; break; case GPIO_PIN_15: io_num = 15; break; } IIC_Type_t-》GPIOx_SDA-》MODER&=~(3《《(io_num*2)); //将GPIOx_SDA-》GPIO_SDA清零 IIC_Type_t-》GPIOx_SDA-》MODER|=0《《(io_num*2); //将GPIOx_SDA-》GPIO_SDA设置为输入模式}

//设置SDA为输出模式static void SDA_OUT(const struct IIC_Type* IIC_Type_t){ uint8_t io_num = 0; //定义io Num号 switch(IIC_Type_t-》GPIO_SDA) { case GPIO_PIN_0: io_num = 0; break; case GPIO_PIN_1: io_num = 1; break; case GPIO_PIN_2: io_num = 2; break; case GPIO_PIN_3: io_num = 3; break; case GPIO_PIN_4: io_num = 4; break; case GPIO_PIN_5: io_num = 5; break; case GPIO_PIN_6: io_num = 6; break; case GPIO_PIN_7: io_num = 7; break; case GPIO_PIN_8: io_num = 8; break; case GPIO_PIN_9: io_num = 9; break; case GPIO_PIN_10: io_num = 10; break; case GPIO_PIN_11: io_num = 11; break; case GPIO_PIN_12: io_num = 12; break; case GPIO_PIN_13: io_num = 13; break; case GPIO_PIN_14: io_num = 14; break; case GPIO_PIN_15: io_num = 15; break; } IIC_Type_t-》GPIOx_SDA-》MODER&=~(3《《(io_num*2)); //将GPIOx_SDA-》GPIO_SDA清零 IIC_Type_t-》GPIOx_SDA-》MODER|=1《《(io_num*2); //将GPIOx_SDA-》

GPIO_SDA设置为输出模式}//设置SCL电平static void IIC_SCL(const struct IIC_Type* IIC_Type_t,int n){ if(n == 1) { HAL_GPIO_WritePin(IIC_Type_t-》GPIOx_SCL,IIC_Type_t-》GPIO_SCL,GPIO_PIN_SET); //设置SCL为高电平 } else{ HAL_GPIO_WritePin(IIC_Type_t-》GPIOx_SCL,IIC_Type_t-》GPIO_SCL,GPIO_PIN_RESET); //设置SCL为低电平 }}//设置SDA电平static void IIC_SDA(const struct IIC_Type* IIC_Type_t,int n){ if(n == 1) { HAL_GPIO_WritePin(IIC_Type_t-》GPIOx_SDA,IIC_Type_t-》GPIO_SDA,GPIO_PIN_SET); //设置SDA为高电平 } else{ HAL_GPIO_WritePin(IIC_Type_t-》GPIOx_SDA,IIC_Type_t-》GPIO_SDA,GPIO_PIN_RESET); //设置SDA为低电平 }}//

读取SDA电平static uint8_t READ_SDA(const struct IIC_Type* IIC_Type_t){ return HAL_GPIO_ReadPin(IIC_Type_t-》GPIOx_SDA,IIC_Type_t-》GPIO_SDA); //读取SDA电平}//IIC初始化static void IIC_Init_t(const struct IIC_Type* IIC_Type_t){ GPIO_InitTypeDef GPIO_Initure; //根据GPIO组初始化GPIO时钟 if(IIC_Type_t-》GPIOx_SCL == GPIOA || IIC_Type_t-》GPIOx_SDA == GPIOA) { __HAL_RCC_GPIOA_CLK_ENABLE(); //使能GPIOA时钟 } if(IIC_Type_t-》GPIOx_SCL == GPIOB || IIC_Type_t-》GPIOx_SDA == GPIOB) { __HAL_RCC_GPIOB_CLK_ENABLE(); //

使能GPIOB时钟 } if(IIC_Type_t-》GPIOx_SCL == GPIOC || IIC_Type_t-》GPIOx_SDA == GPIOC) { __HAL_RCC_GPIOC_CLK_ENABLE(); //使能GPIOC时钟 } if(IIC_Type_t-》GPIOx_SCL == GPIOD || IIC_Type_t-》GPIOx_SDA == GPIOD) { __HAL_RCC_GPIOD_CLK_ENABLE(); //使能GPIOD时钟 } if(IIC_Type_t-》GPIOx_SCL == GPIOE || IIC_Type_t-》GPIOx_SDA == GPIOE) { __HAL_RCC_GPIOE_CLK_ENABLE(); //使能GPIOE时钟 } if(IIC_Type_t-》GPIOx_SCL == GPIOH || IIC_Type_t-》GPIOx_SDA == GPIOH) { __HAL_RCC_GPIOH_CLK_ENABLE(); //使能GPIOH时钟 } //GPIO_SCL初始化设置 GPIO_Initure.Pin=IIC_Type_t-》GPIO_SCL; GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //

推挽输出 GPIO_Initure.Pull=GPIO_PULLUP; //上拉 GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH; //快速 HAL_GPIO_Init(IIC_Type_t-》GPIOx_SCL,&GPIO_Initure); //GPIO_SDA初始化设置 GPIO_Initure.Pin=IIC_Type_t-》GPIO_SDA; GPIO_Initure.Mode=GPIO_MODE_OUTPUT_PP; //推挽输出 GPIO_Initure.Pull=GPIO_PULLUP; //上拉 GPIO_Initure.Speed=GPIO_SPEED_FREQ_VERY_HIGH; //快速 HAL_GPIO_Init(IIC_Type_t-》GPIOx_SDA,&GPIO_Initure); //SCL与SDA的初始化均为高电平 IIC_SCL(IIC_Type_t,1); IIC_SDA(IIC_Type_t,1);}//IIC Startstatic void IIC_Start_t(const struct IIC_Type* IIC_Type_t){ SDA_OUT(IIC_Type_t); //sda线输出 IIC_SDA(IIC_Type_t,1); IIC_SCL(IIC_Type_t,1); IIC_Type_t-》delay_us(4); IIC_SDA(IIC_Type_t,0); //START:when CLK is high,DATA change form high to low IIC_Type_t-》delay_us(4); IIC_SCL(IIC_Type_t,0); //钳住I2C总线,准备发送或接收数据 }//IIC Stopstatic void IIC_Stop_t(const struct IIC_Type* IIC_Type_t){ SDA_OUT(IIC_Type_t); //sda线输出 IIC_SCL(IIC_Type_t,0); IIC_SDA(IIC_Type_t,0); //STOP:when CLK is high DATA change form low to high IIC_Type_t-》delay_us(4); IIC_SCL(IIC_Type_t,1); IIC_SDA(IIC_Type_t,1); //发送I2C总线结束信号 IIC_Type_t-》delay_us(4); }//IIC_Wait_ack 返回HAL_OK表示wait成功,返回HAL_ERROR表示wait失败static uint8_t IIC_Wait_Ack_t(const struct IIC_Type* IIC_Type_t) //IIC_Wait_ack,返回wait失败或是成功{ uint8_t ucErrTime = 0; SDA_IN(IIC_Type_t); //

SDA设置为输入 IIC_SDA(IIC_Type_t,1);IIC_Type_t-》delay_us(1); IIC_SCL(IIC_Type_t,1);IIC_Type_t-》delay_us(1); while(READ_SDA(IIC_Type_t)) { ucErrTime++; if(ucErrTime》250) { IIC_Type_t-》IIC_Stop(IIC_Type_t); return HAL_ERROR; } } IIC_SCL(IIC_Type_t,0);//时钟输出0 return HAL_OK; }//产生ACK应答static void IIC_Ack_t(const struct IIC_Type* IIC_Type_t) { IIC_SCL(IIC_Type_t,0); SDA_OUT(IIC_Type_t); IIC_SDA(IIC_Type_t,0); IIC_Type_t-》delay_us(2); IIC_SCL(IIC_Type_t,1); IIC_Type_t-》delay_us(2); IIC_SCL(IIC_Type_t,0);}//产生NACK应答static void IIC_NAck_t(const struct IIC_Type* IIC_Type_t) { IIC_SCL(IIC_Type_t,0); SDA_OUT(IIC_Type_t); IIC_SDA(IIC_Type_t,1); IIC_Type_t-》delay_us(2); IIC_SCL(IIC_Type_t,1); IIC_Type_t-》delay_us(2); IIC_SCL(IIC_Type_t,0);}//IIC_Send_Byte,

入口参数为要发送的字节static void IIC_Send_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t txd) { uint8_t t = 0; SDA_OUT(IIC_Type_t); IIC_SCL(IIC_Type_t,0);//拉低时钟开始数据传输 for(t=0;t《8;t++) { IIC_SDA(IIC_Type_t,(txd&0x80)》》7); txd 《《= 1; IIC_Type_t-》delay_us(2); //对TEA5767这三个延时都是必须的 IIC_SCL(IIC_Type_t,1); IIC_Type_t-》delay_us(2); IIC_SCL(IIC_Type_t,0); IIC_Type_t-》delay_us(2); } }//IIC_Send_Byte,入口参数为是否要发送ACK信号static uint8_t IIC_Read_Byte_t(const struct IIC_Type* IIC_Type_t,uint8_t ack) { uint8_t i,receive = 0; SDA_IN(IIC_Type_t);//SDA设置为输入 for(i=0;i《8;i++ ) { IIC_SCL(IIC_Type_t,0); IIC_Type_t-》delay_us(2); IIC_SCL(IIC_Type_t,1); receive《《=1; if(READ_SDA(IIC_Type_t))receive++; IIC_Type_t-》delay_us(1); } if (!ack) IIC_Type_t-》IIC_NAck(IIC_Type_t);//发送nACK else IIC_Type_t-》IIC_Ack(IIC_Type_t); //发送ACK return receive;}//实例化一个IIC1外设,相当于一个结构体变量,可以直接在其他文件中使用IIC_TypeDef IIC1 = { .GPIOx_SCL = GPIOA, //GPIO组为GPIOA .GPIOx_SDA = GPIOA, //GPIO组为GPIOA .GPIO_SCL = GPIO_PIN_5, //GPIO为PIN5 .GPIO_SDA = GPIO_PIN_6, //GPIO为PIN6 .IIC_Init = IIC_Init_t, .IIC_Start = IIC_Start_t, .IIC_Stop = IIC_Stop_t, .IIC_Wait_Ack = IIC_Wait_Ack_t, .IIC_Ack = IIC_Ack_t, .IIC_NAck = IIC_NAck_t, .IIC_Send_Byte = IIC_Send_Byte_t, .IIC_Read_Byte = IIC_Read_Byte_t, .delay_us = delay_us //需自己外部实现delay_us函数};

上述就是IIC驱动的封装,由于没有应用场景暂不测试其实用性,待下面ATC64的驱动缝缝扎黄写完之后一起测试使用。

ATC64XX驱动封装实现

at24cxx.h头文件主要是类模板的定义,具体如下:

// 以下是共定义个具体容量存储器的容量#define AT24C01 127#define AT24C02 255#define AT24C04 511#define AT24C08 1023#define AT24C16 2047#define AT24C32 4095#define AT24C64 8191 //8KBytes#define AT24C128 16383#define AT24C256 32767

//定义AT24CXX类typedef struct AT24CXX_Type{ //属性 u32 EEP_TYPE; //存储器类型(存储器容量) //操作 IIC_TypeDef IIC; //IIC驱动 uint8_t (*AT24CXX_ReadOneByte)(const struct AT24CXX_Type*,uint16_t); //指定地址读取一个字节 void (*AT24CXX_WriteOneByte)(const struct AT24CXX_Type*,uint16_t,uint8_t); //指定地址写入一个字节 void (*AT24CXX_WriteLenByte)(uint16_t,uint32_t,uint8_t); //指定地址开始写入指定长度的数据 uint32_t (*AT24CXX_ReadLenByte)(uint16_t,uint8_t); //指定地址开始读取指定长度数据 void (*AT24CXX_Write)(uint16_t,uint8_t *,uint16_t); //指定地址开始写入指定长度的数据 void (*AT24CXX_Read)(uint16_t,uint8_t *,uint16_t); //指定地址开始写入指定长度的数据 void (*AT24CXX_Init)(const struct AT24CXX_Type*); //初始化IIC uint8_t (*AT24CXX_Check)(const struct AT24CXX_Type*); //检查器件}AT24CXX_TypeDef;

extern AT24CXX_TypeDef AT24C_64; //外部声明实例化AT24CXX对象

at24cxx.c源文件主要是类模板具体操作函数的实现,具体如下:

//在AT24CXX指定地址读出一个数据//ReadAddr:开始读数的地址 //返回值 :读到的数据static uint8_t AT24CXX_ReadOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t ReadAddr){ uint8_t temp=0; AT24CXX_Type_t-》IIC.IIC_Start(&AT24CXX_Type_t-》IIC); //根据AT的型号发送不同的地址 if(AT24CXX_Type_t-》EEP_TYPE 》 AT24C16) { AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,0XA0); //发送写命令 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,ReadAddr》》8);//发送高地址 }else AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,0XA0+((ReadAddr/256)《《1)); //发送器件地址0XA0,写数据 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,ReadAddr%256); //发送低地址 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Start(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,0XA1); //进入接收模式 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); temp=AT24CXX_Type_t-》IIC.IIC_Read_Byte(&AT24CXX_Type_t-》IIC,0); AT24CXX_Type_t-》IIC.IIC_Stop(&AT24CXX_Type_t-》IIC);//产生一个停止条件 return temp;}//在AT24CXX指定地址写入一个数据//WriteAddr :写入数据的目的地址 //DataToWrite:要写入的数据static void AT24CXX_WriteOneByte_t(const struct AT24CXX_Type* AT24CXX_Type_t,uint16_t WriteAddr,uint8_t DataToWrite){ AT24CXX_Type_t-》IIC.IIC_Start(&AT24CXX_Type_t-》IIC); if(AT24CXX_Type_t-》EEP_TYPE 》 AT24C16) { AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,0XA0); //发送写命令 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,WriteAddr》》8);//发送高地址 }else AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,0XA0+((WriteAddr/256)《《1)); //发送器件地址0XA0,写数据 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,WriteAddr%256); //发送低地址 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Send_Byte(&AT24CXX_Type_t-》IIC,DataToWrite); //发送字节 AT24CXX_Type_t-》IIC.IIC_Wait_Ack(&AT24CXX_Type_t-》IIC); AT24CXX_Type_t-》IIC.IIC_Stop(&AT24CXX_Type_t-》IIC);//产生一个停止条件 AT24CXX_Type_t-》IIC.delay_us(10000); }//在AT24CXX里面的指定地址开始写入长度为Len的数据//该函数用于写入16bit或者32bit的数据。//WriteAddr :开始写入的地址 //DataToWrite:数据数组首地址//Len :要写入数据的长度2,4static void AT24CXX_WriteLenByte_t(uint16_t WriteAddr,uint32_t DataToWrite,uint8_t Len){ uint8_t t; for(t=0;t《Len;t++) { AT24CXX_WriteOneByte(WriteAddr+t,(DataToWrite》》(8*t))&0xff); } }//在AT24CXX里面的指定地址开始读出长度为Len的数据//该函数用于读出16bit或者32bit的数据。//ReadAddr :开始读出的地址 //返回值 :数据//Len :要读出数据的长度2,4static uint32_t AT24CXX_ReadLenByte_t(uint16_t ReadAddr,uint8_t Len){ uint8_t t; uint32_t temp=0; for(t=0;t《Len;t++) { temp《《=8; temp+=AT24CXX_ReadOneByte(ReadAddr+Len-t-1); } return temp; }//在AT24CXX里面的指定地址开始写入指定个数的数据//WriteAddr :开始写入的地址 对24c64为0~8191//pBuffer :数据数组首地址//NumToWrite:要写入数据的个数static void AT24CXX_Write_t(uint16_t WriteAddr,uint8_t *pBuffer,uint16_t NumToWrite){ while(NumToWrite--) { AT24CXX_WriteOneByte(WriteAddr,*pBuffer); WriteAddr++; pBuffer++; }}//在AT24CXX里面的指定地址开始读出指定个数的数据//ReadAddr :开始读出的地址 对24c64为0~8191//pBuffer :数据数组首地址//NumToRead:要读出数据的个数static void AT24CXX_Read_t(uint16_t ReadAddr,uint8_t *pBuffer,uint16_t NumToRead){ while(NumToRead) { *pBuffer++=AT24CXX_ReadOneByte(ReadAddr++); NumToRead--; }} //初始化IIC接口static void AT24CXX_Init_t(const struct AT24CXX_Type* AT24CXX_Type_t){ AT24CXX_Type_t-》IIC.IIC_Init(&AT24CXX_Type_t-》IIC);//IIC初始化}//检查器件,返回0表示检测成功,返回1表示检测失败static uint8_t AT24CXX_Check_t(const struct AT24CXX_Type* AT24CXX_Type_t) { uint8_t temp; temp = AT24CXX_Type_t-》AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t-》EEP_TYPE);//避免每次开机都写AT24CXX if(temp == 0X33)return 0; else//排除第一次初始化的情况 { AT24CXX_Type_t-》AT24CXX_WriteOneByte(AT24CXX_Type_t,AT24CXX_Type_t-》EEP_TYPE,0X33); temp = AT24CXX_Type_t-》AT24CXX_ReadOneByte(AT24CXX_Type_t,AT24CXX_Type_t-》EEP_TYPE); if(temp==0X33)return 0; } return 1; }//实例化AT24CXX对象AT24CXX_TypeDef AT24C_64={ .EEP_TYPE = AT24C64, //存储器类型(存储器容量) //操作 .IIC={ .GPIOx_SCL = GPIOA, .GPIOx_SDA = GPIOA, .GPIO_SCL = GPIO_PIN_5, .GPIO_SDA = GPIO_PIN_6, .IIC_Init = IIC_Init_t, .IIC_Start = IIC_Start_t, .IIC_Stop = IIC_Stop_t, .IIC_Wait_Ack = IIC_Wait_Ack_t, .IIC_Ack = IIC_Ack_t, .IIC_NAck = IIC_NAck_t, .IIC_Send_Byte = IIC_Send_Byte_t, .IIC_Read_Byte = IIC_Read_Byte_t, .delay_us = delay_us }, //IIC驱动 .AT24CXX_ReadOneByte = AT24CXX_ReadOneByte_t, //指定地址读取一个字节 .AT24CXX_WriteOneByte = AT24CXX_WriteOneByte_t,//指定地址写入一个字节 .AT24CXX_WriteLenByte = AT24CXX_WriteLenByte_t, //指定地址开始写入指定长度的数据 .AT24CXX_ReadLenByte = AT24CXX_ReadLenByte_t, //指定地址开始读取指定长度数据 .AT24CXX_Write = AT24CXX_Write_t, //指定地址开始写入指定长度的数据 .AT24CXX_Read = AT24CXX_Read_t, //指定地址开始读取指定长度的数据 .AT24CXX_Init = AT24CXX_Init_t, //初始化IIC .AT24CXX_Check = AT24CXX_Check_t //检查器件};

[1] [2]
关键字:STM32开发  C语言  IIC驱动 引用地址:STM32开发中使用C语言实现IIC驱动

上一篇:意法半导体微控制器STM32H5 探索套件加快安全、智能、互联设备开发
下一篇:STM32F207内部Flash编程详解

推荐阅读最新更新时间:2024-11-12 13:57

STM32开发笔记64: STM32F4 UART4-5移植驱动程序应注意的问题
单片机型号:STM32F407VGT6 使用通用串口驱动程序分别运行UART1和UART4,则UART1正常,UART5不正常,本文解释具体原因。 先看STM32F407VGT6的串口配置情况,如下图所示,串口1、2、3、6为USART(同异步串口),串口4、5为UART(异步串口)。 在启动文件startup_stm32f407xx.s定义的中断矢量入口地址不同,可参看下面程序。 DCD USART1_IRQHandler ; USART1 DCD USART2_IRQHandler ; USA
[单片机]
<font color='red'>STM32</font><font color='red'>开发</font>笔记64: STM32F4 UART4-5移植<font color='red'>驱动</font>程序应注意的问题
STM32开发 -- 继电器测试
继电器这个东西,怎么说呢。我之前学过自动化。。。 对它是有一定了解的。 思考: 比如如何测试继电器是否是OK的,能否吸合?? 接下来就简单的来看一下STM32上继电器的使用。 一、继电器介绍 参看:一文读懂继电器那些事儿 参看:维基百科 – 继电器 参看:电磁继电器工作原理透彻详解(1) 1、介绍 继电器(relay)是一种电控制器件,是当输入量的变化达到规定要求时,在电气输出电路中使被控量发生预定的阶跃变化的一种电器。它具有控制系统和被控制系统之间的互动关系。通常应用于自动化的控制电路中,它实际上是用小电流去控制大电流运作的一种 自动开关 。 故在电路中起着自动调节、安全保护、转换电路等作用。 2、分类 ●按用途
[单片机]
<font color='red'>STM32</font><font color='red'>开发</font> -- 继电器测试
51单片机教程之基础编(基于C语言
大家好,我是陈滨,本人是去年9月份开始学单片机,到现在一年多了,现在本人基本掌握了单片机编程,开始深入学习汇编语言了。很多初学者有很多的疑惑,我究竟是先学C语言,还是汇编语言?其实我告诉你,本人认为,先学C语言!为什么呢?C语言是目前使用最广泛的中级语言,就连现在的windows7也是C语言编写的,C语言易读性好,无需对单片机内部结构十分熟悉即会编程,可移植性高,便于维护。C语言只有32个关键字,9种控制语句,而且编译器提供了很多函数库,使用十分方便。而汇编语言达100多条指令,每条指令对应一个机器码,跟单片机内部结构息息相关,而且不提供库函数,每种东西都要自己写。汇编语言最致命的地方是它不同硬件几乎不可移植,维护麻烦。但是读者又有
[单片机]
依托STM32开发,菜鸟如何逆袭!
我想说,为了学习单片机而去学习单片机的思路不对。 你问,如何系统地入门学习stm32? 本身就是一个错误的问题。假如你会使用8051 , 会写C语言,那么STM32本身并不需要刻意的学习。 你要考虑的是, 我可以用STM32实现什么? 为什么使用STM32而不是8051? 是因为51的频率太低,无法满足计算需求?是51的管脚太少,无法满足众多外设的IO? 是51的功耗太大,电池挺不住?是51的功能太弱,而你要使用SPI、I2C、ADC、DMA? 是51的内存太小而你要存储的东西太多? 当你需要使用STM32某些功能,而51实现不了的时候, 那STM32自然不需要学习,你会直接去寻找STM32某方面的使用方法。比如要用spi
[单片机]
PIC单片机的C语言使用(一)
在MPLAB-IDE中使用HitechC编译器 一、装入编译器: 1、启动MPLAB-IDE,如下图所示选择Project-》Install Language Tool 2、在弹出的安装语言工具对话框里“Language Suite”选项现在显示的是Microchip,点击后面的箭头来选择语言。 我使用的工具是HI-TECH PICCME,所以选择为“HI-TECH PICC”。 3、接下来在“Tool Name”里选择编译器组件的调用路径,这里有“PICC Compiler”(C编译器)、“PICC Assembler”(汇编器)和“PICC Linker”(链接器)3项都需要设置。 用
[单片机]
PIC单片机的<font color='red'>C语言</font>使用(一)
单片机的c语言教程 第四课 数据类型
先来简单说说C语言的标识符和关键字。标识符是用来标识源程序中某个对象的名字的,这些对象可以是语句、数据类型、函数、变量、数组等等。C语言是大小字敏感的一种高级语言,如果我们要定义一个定时器1,可以写做 Timer1 ,如果程序中有 TIMER1 ,那么这两个是完全不同定义的标识符。标识符由字符串,数字和下划线等组成,注意的是第一个字符必须是字母或下划线,如 1Timer 是错误的,编译时便会有错误提示。有些编译系统专用的标识符是以下划线开头,所以一般不要以下划线开头命名标识符。标识符在命名时应当简单,含义清晰,这样有助于阅读理解程序。在C51编译器中,只支持标识符的前32位为有效标识,一般情况下也足够用了,除非你要写天书:P。 关键
[单片机]
单片机的<font color='red'>c语言</font>教程 第四课 数据类型
STM32高级开发(13)-Ubuntu下的串口助手minicom
在这么长时间里我们在Ubuntu上调试stm32,大家在使用串口的时候是不是一直都是在宿主机上的串口助手中查看串口信息呢?来回切换是不是很麻烦?那么在这篇中我们就来介绍一下在Ubuntu下的串口助手,或者准确点说应该叫串口终端,它就是minicom。 终端与串口助手的区别 在我们正式介绍minicom之前,我们首先来关注一个问题即:终端与串口助手有什么区别?(注意这里的终端不是指Ubuntu的shell指令终端,而是说串口软件终端) 其实如果大家接触过Linux嵌入式开发应该就很明白这其中的差别了,不过鉴于大家可能之前没有接触过Linux嵌入式开发,我们这里就为大家详细的讲解一下他们。 在Linux嵌入式开发中,很多时
[单片机]
<font color='red'>STM32</font>高级<font color='red'>开发</font>(13)-Ubuntu下的串口助手minicom
大联大友尚集团推出ST STM32马达控制Nucleo开发工具包
2016年6月21日,致力于亚太地区市场的领先半导体元器件分销商---大联大控股宣布,其旗下友尚推出一款ST马达控制入门套件和一个新的免费软件算法,协助马达控制工程人员和爱好者以极短的时间实现高效的马达向量控制,例如无人机、家电、电动自行车(E-bike)、家庭自动化、医疗仪器及工业机器等。 搭配STM32马达控制生态系统的新软件---P-NUCLEO-IHM001马达控制套件---让用户能够直接开始运转(plug and spin)同步马达,无需任何专门的或附加的开发工具。新套件采用一个携带方便的塑料泡壳包装(blister pack),包含STM32 F3 Nucleo微控制器板、基于STSPIN L6230马达驱动器芯片的
[嵌入式]
大联大友尚集团推出ST <font color='red'>STM32</font>马达控制Nucleo<font color='red'>开发</font>工具包
小广播
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
更多往期活动

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved