基于UC3875的全桥软开关直流电源设计

最新更新时间:2012-11-07来源: 互联网关键字:UC3875  全桥软开关  直流电源 手机看文章 扫描二维码
随时随地手机看文章

PWM是英文“Pulse Width Modulation”的缩写,简称脉宽调制,是利用微处理器的数字输出来对模拟电路进行控制的一种非常有效的技术,广泛应用在从测量、通信到功率控制与变换的许多领域中。UCC3895是美国德州仪器公司生产的移相谐振全桥软开关控制器,该系列控制器采用了先进的BCDMOS技术。 UCC3895在基本功能上与UC3875系列和UC3879系列控制器完全相同,同时增加了一些新的功能。

    本文介绍了一台采用移相谐振控制芯片UC3875作为控制核心设计的开关频率为70kHz、输出功率1.2kW、主电路为移相全桥ZVZCS PWM软开关模式的直流开关电源。

l 移相式ZVZCSPWM软开关电源主电路分析

  在设计制作的1.2kW(480V/2.5A)的软开关电源中,其主电路为全桥变换器结构,四只开关管均为MOSFET(1000V/24A),采用移相ZVZCSPWM控制,即超前臂开关管实现ZVS、滞后臂开关管实现ZCS,电路结构简图如图l,VT1~VT4是全桥变换器的四只MOSFET开关管,VD1、VD2分别是超前臂开关管VT1、VT2的反并超快恢复二极管,C1、C2分别是为了实现VTl、VT2的ZVS设置的高频电容,VD3、VD4是反向电流阻断二极管,以实现滞后臂VT3、VT4的ZCS,Llk为变压器漏感,Cb为阻断电容,T为主变压器,副边由VD5~VD8构成的高频整流电路以及Lf、C3、C4等滤波器件组成。

  其基本工作原理如下:

  当开关管VT1、VT4或VT2、VT3同时导通时,电路工作情况与全桥变换器的硬开关工作模式情况一样,主变压器原边向负载提供能量。通过移相控制,在关断VT1时并不马上关断VT4,而是根据输出反馈信号决定的移相角,经过一定时间后再关断VT4,在关断VT1之前,由于VT1导通,其并联电容C1上电压等于VT1的导通压降,理想状况下其值为零,当关断VT1时刻,C1开始充电,由于电容电压不能突变,因此,VT1即是零电压关断。

 

  由于变压器漏感L1k以及副边整流滤波电感的作用,VT1关断后,原边电流不能突变,继续给Cb充电,同时C2也通过原边放电,当C2电压降到零后,VD2自然导通,这时开通VT2,则VT2即是零电压开通。

  当C1充满电、C2放电完毕后,由于VD2是导通的,此时加在变压器原边绕组和漏感上的电压为阻断电容Cb两端电压,原边电流开始减小,但继续给Cb充电,直到原边电流为零,这时由于VD4的阻断作用,电容Cb不能通过VT2、VT4、VD4进行放电,Cb两端电压维持不变,这时流过VT4电流为零,关断VT4即是零电流关断。

  关断VT4以后,经过预先设置的死区时间后开通VT3,由于电压器漏感的存在,原边电流不能突变,因此VT3即是零电流开通。

  VT2、VT3同时导通后原边向负载提供能量,一定时间后关断VT2,由于C2的存在,VT2是零电压关断,如同前面分析,原边电流这时不能突变,C1经过VD3、VT3、Cb放电完毕后,VD1自然导通,此时开通VT1即是零电压开通,由于VD3的阻断,原边电流降为零以后,关断VT3,则VT3即是零电流关断,经过预选设置好的死区时间延迟后开通VT4,由于变压器漏感及副边滤波电感的作用,原边电流不能突变,VT4即是零电流开通。

  这种采用超快恢复二极管阻断原边反向电流方式的移相式ZVZCS PWM全桥变换器拓扑的理想工作波形如图2所示,其中Uab表示主电路图3中a、b两点之间的电压,ip为变压器T原边电流,Ucb为阻断电容Ub上的电压,Urect是副边整流后的电压。

 

 

 

 

 

2  基于UC3875的主控制回路设计

  为了实现主回路开关管ZVZCS软开关,采用UC3875为其设计了PWM移相控制电路,如图3所示。考虑到所选MOSFET功率比较大对芯片的四个输出驱动信号进行了功率放大,再经高频脉冲变压器T1、T2隔离最后经过驱动电路驱动MOSFET开关管。整个控制系统所有供电均用同一个15V直流电源,实验中设置开关频率为70kHz,死区时间设置为1.5μs,采用简单的电压控制模式,电源输出直流电压通过采样电路、光电隔离电路后形成控制信号,输入到UC3875误差放大器的EA一,控制UC3875误差放大器的输出,从而控制芯片四个输出之间的移相角大小,使电源能够稳定工作,图中R6、C5接在EA一和E/AOUT之间构成PI控制。在本设计中把CS+端用作故障保护电路,当发生输出过压、输出过流、高频变原边过流、开关管过热等故障时,通过一定的转换电路,把故障信号转换为高于2.5V的电压接到CS+端,使UC3875四个输出驱动信号全为低电平,对电路实现保护。

  图4是开关管的驱动电路。隔离变压器的设计采用AP法、变比为l:1.3的三绕组变压器。UC3875输出的单极性脉冲经过放大电路、隔离电路和驱动电路后形成+12V/一5V的双极性驱动脉冲,保证开关管的稳定开通和关断。

 

 

3  仿真与实验结果分析

  PSpice是一款功能强大的电路分析软件,对开关频率70kHz的ZVZCS软开关电源的仿真是在PSpice9.1平台上进行的。

  实验样机的主回路结构采用图1所示的电路拓扑,阻断二极管采用超快恢复大功率二极管RHRG30120,其反向恢复时间在100ns以内,满足70kHz开关频率的要求。开关管MOSFET采用IXYS公司的IXFK24N100开关管,这种型号MOS管自身反并有超快恢复二极管,其反向恢复时间约250ns。

  图5是超前桥臂开关管驱动电压与管压降波形图,(a)为仿真波形、(b)为实验波形,可见超前臂开关管完全实现了ZVS开通,VT1、VT2关断时是依赖其自身很小的结电容来实现的,从图中可以看出,关断时也基本实现了ZVS关断。

 


 

 

 

 

图6是滞后桥臂开关管驱动电压与电流波形图,(a)为仿真波形、(b)为实验波形;图7是滞后臂开关管管压降与电流波形图,(a)为仿真波形、(b)为实验波形,从图6、图7可以看出滞后臂开关管VT3、VT4很好地实现了ZCS关断,关断时开关管电流已经为零;滞后臂开关管完全开通之前,开关管电流也几乎为零,基本实现了ZCS开通。而且滞后桥臂开关管VT3、VT4可以在很大负载范围内实现ZCS开关。

  图8是两桥臂中点之间的电压Uab的波形图,(a)为仿真波形、(b)为实验波形。图9是阻断电容Cb上的电压U曲波形,(a)为仿真波形、(b)为实验波形。从图上可以看出,由于有Ucb的存在,Uab不是一个方波。当Uab=0时,阻断电容Cb上的电压Ucb使原边电流ip逐渐减小到零,由于阻断二极管的阻断作用,ip不能反向流动,从而实现了滞后桥臂的ZCS开关。

4  结论

    本文在介绍了移相谐振控制芯片UC3875的工作特点并详细分析了采用串联阻断二极管的移相式ZVZCS PWM软开关工作特性的基础上,设计了一台1.2kW、开关频率70kHz的全桥软开关直流电源,并应用PSpice软件进行了仿真,实验结果与仿真结果基本符合。实验表明以UC3875为核心的控制部分结构简单可靠,电源主电路开关管均实现了软开关,并克服了单纯的ZVS或ZCS软开关模式的缺点,可有效减小开关管开关过程引起的损耗,有利于提高电源开关频率,减小电源体积和重量。

关键字:UC3875  全桥软开关  直流电源 编辑:神话 引用地址:基于UC3875的全桥软开关直流电源设计

上一篇:基于LM2576的多功能开关电源设计
下一篇:一种实用开关电源的设计

推荐阅读最新更新时间:2023-10-13 10:57

光伏并网系统DC/DC全桥软开关变换器的研究
  目前并网逆变器市场上大多采用工频隔离型并网逆变器,由于工频变压器会使系统效率变低、体积大、成本高等缺点,近年来,高频隔离型并网逆变器也逐渐成为研究热点;但是逆变器的高频化会带来高电磁干扰(EMI)和高开关损耗,同时考虑到光伏并网系统作为大功率系统的应用,因此移相全桥软开关变换器(FB-ZVZCS)很适用于光伏并网中的DC/DC环节。   现阶段,实现FB-ZVZCS的方法有很多,主要有滞后桥臂串阻塞二极管、原边串饱和电抗器,副边有源钳位等等;文献提出了一种副边无源钳位的ZVZCS变换器,本文结合光伏逆变器的特点并从电路结构简单、占空比丢失小、副边整流二极管寄生振荡小、效率高的角度出发,采用无源钳位的ZVZCS变换器作为光伏
[电源管理]
光伏并网系统DC/DC<font color='red'>全桥</font><font color='red'>软开关</font>变换器的研究
泰克公司推出新系列直流电源PWS4000
泰克公司日前宣布在其台式仪器系列中增加新产品:PWS4000系列可编程直流(DC)电源。全新和已有电源系列能与泰克公司其他台式仪器无缝集成,如示波器和数字万用表等,提供宽电流和电压范围,已实现多种应用最大限度的通用性。 对于追求较高性能、特性丰富且具有价格竞争力的电源的设计工程师而言,上述全新系列电源是不二之选。相对于市场上推出的同类产品,PWS4000和现有的PWS2000-SC系列在性能和易用性等方面具有显著的优势。 全新电源可与泰克公司日前宣布推出的FCA3000/3100和MCA3000系列计时器/频率计/分析仪配套使用,请参考另一则新闻稿。 泰克公司台式仪器总经理Mik
[测试测量]
泰克公司推出新系列<font color='red'>直流电源</font>PWS4000
基于交流或直流电源的LED驱动电路设计实例
 根据具体应用的不同,LED可能会采用不同的电源来供电,如交流线路、太阳能板、12 V汽车电池、直流电源或低压交流系统,甚至是基于碱和镍的电池或锂离子电池等。    1)采用交流离线电源为LED供电   在采用交流离线电源为LED供电的应用中,涉及到众多不同的应用场合,如电子镇流器、荧光灯替代、交通信号灯、LED灯泡、街道和停车照明、建筑物照明、障碍灯和标志等。在这些从交流主电源驱动大功率LED的应用中,有两种常见的电源转换技术,即在需要电流隔离(galvanic isolation)时使用反激转换器,或在不需要隔离时使用较为简单的降压拓扑结构。   在反激转换器方面,根据输出 功率 的不同,可以采用安森美半导体的
[电源管理]
基于交流或<font color='red'>直流电源</font>的LED驱动电路设计实例
分析关于高压直流电源控制系统的研究
  高压直流输电(HVDC)作为一种新兴的输电技术,目前已经得到了广泛的重视和应用。随着“西电东送”和“全国联网”战略规划的实施,我国将出现越来越多的直流输电工程。主要介绍高压直流输电的特点,并且着重针对高压直流电源控制系统的运行特点进行研究。   一、引言   利用高压直流系统固有的快速、大范围可控制的输送电能的特点,可以借助交直流系统联合调节的手段来提高与直流系统相连接的交流系统的运行稳定性。为了实现这一目的,必须在直流输电系统主控制器上附加特殊的稳定控制器。文章基于此在介绍了高压直流输电的特点的基础上对高压直流电源控制系统的运行特点进行了研究。   二、高压直流输电的特点   1、功率传输特性。随着输
[电源管理]
集散控制直流电源系统设计
引言 集散控制直流电源系统是对多个直流电源既可分散控制、调节、监视管理,又可利用现代网络技术集中监视和操作,达到掌握全局控制的目的。系统要求具有较高的稳定性、可靠性和可扩展性。通常直流电源的集中监控技术不利于监控系统的智能化改进。 本文介绍的集散控制直流电源系统,直流电源由高频开关电源和铅酸免维护蓄电池组组成,高频开关电源采用全控型半导体器件IGBT及高频变压器等组成,具有效率高、体积小、重量轻及快速的动态响应,有效地提高电源的可靠性和可维护性。集中监控则采用自动化控制领域发展最快的CAN(Controller Area Network)总线技术,它是一种有效支持分布式控制和实时控制的串行通信网络,具有高性能、
[单片机]
集散控制<font color='red'>直流电源</font>系统设计
试探影响真空自耗电极熔炼炉供电直流电源稳定性的因素
  1.引言   直流真空熔炼是稀贵金属及高等级合金钢必定要采用的工艺,这种工艺配套的设备从大的方面分为真空熔炼炉和给其供电的直流电源两大部分,随着是铸造产品和炼锭子的不同,真空熔炼炉分为以化锭子为主要目的的真空自耗电极熔炼炉和以浇铸模型件的真空浇铸凝壳炉两大类别,而它们的供电电源又分为整流变压器一次高压侧饱和电抗器交流调压、整流变压器二次侧整流管整流和整流变压器一次侧晶闸管可控调压、整流变压器二次侧整流管整流及整流变压器二次晶闸管一次调压三种方案,在国内由于整流变压器一次侧晶闸管交流调压,需要增加先将6kV或10kV甚至35kV降为晶闸管可以承受的几百伏电压后进行交流调压,然后再将调压后的电压经整流变压器降为几十伏,由整流管整流
[电源管理]
试探影响真空自耗电极熔炼炉供电<font color='red'>直流电源</font>稳定性的因素
基于交流或直流电源的LED驱动电路设计实例
根据具体应用的不同,LED可能会采用不同的电源来供电,如交流线路、太阳能板、12 V汽车电池、直流电源或低压交流系统,甚至是基于碱和镍的电池或锂离子电池等。    1)采用交流离线电源为LED供电   在采用交流离线电源为LED供电的应用中,涉及到众多不同的应用场合,如电子镇流器、荧光灯替代、交通信号灯、LED灯泡、街道和停车照明、建筑物照明、障碍灯和标志等。在这些从交流主电源驱动大功率LED的应用中,有两种常见的电源转换技术,即在需要电流隔离(galvanic isolation)时使用反激转换器,或在不需要隔离时使用较为简单的降压拓扑结构。   在反激转换器方面,根据输出 功率 的不同,可以采用安森美半导体的不
[电源管理]
基于交流或<font color='red'>直流电源</font>的LED驱动电路设计实例
一种电除尘器用智能高压逆变直流电源的研制
摘要:介绍了一种电除尘器用高压逆变电源。就其电源的主体结构,主电路的工作原理,及控制电路的工作原理作了简要的论述。同时对系统的软件也进行了简要说明。 关键词:电除尘;高压逆变器;智能化 引言 随着工业粉尘及废气排放量的日益增加,其对环境的污染也越来越严重,特别是在冶金、矿山、建材、化工等行业中。众所周知,应用静电除尘器能够有效地收集起这些粉尘,但是,常规的高压静电除尘装置体积庞大、笨重,使用不便,因此,减小高压静电除尘装置的体积与重量就显得尤为重要。 近年来,伴随着电力电子技术的飞速发展,特别是新一代功率电子器件如IGBT,MOSFET等的应用,高频逆变技术越来越成熟,各种不同类型和特点的电路广泛地被应用于DC/DC与D
[应用]
小广播
最新电源管理文章
换一换 更多 相关热搜器件

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关:

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved