推荐阅读最新更新时间:2023-10-13 11:01
升压型DC-DC变换器电流环路补偿设计
摘要:针对固定频率峰值电流模式PWM升压型DC-DC变换器。给出了一种结构简单、易于集成的电流环路补偿电路的设计方法。该电路的斜坡产生电路可对片内振荡器充放电电容上的电压作V/I转换,其所得到的斜坡电流具有稳定、斜率易于调节等特点;而电流采样电路主体采用SENSEFET结合优化的缓冲级和V/I转换电路,从而在提高采样精度的同时,还减小了损耗。整个电路可采用0.6 μm 15 V BCD工艺实现。通过Cadence Spectre进行的仿真结果表明,该电路可有效地抑制亚谐波振荡,采样精度达到77.9%,补偿斜率精度达到81.5%。 关键词:斜坡补偿;电流采样;电流模式;V/I转换
O 引言 固定频率峰值电流模式PWM
[电源管理]
3.3V到5v/480maT升压DCDC变换器电路
3.3V到5v/480maT升压DCDC变换器电路 LTC1872这一款电流模式升压DC/DC控制器,其工作频率550KHz、输入电压范围2.5V~9.8V、负载电流高达2A。图2 为3.3V 到5V的升压变换器电路。其应用包括1和2节锂离子电池供电的便携装置,如PDA、GPS系统和网络系统用的板级升压变换。 此器件的高工作频率可使电感器和电容器的数值和大小减小,使设计可封装在小于110mm2的面积内。270μA低工作电流、8μA关闭电流和高达90%的效率都有助于延长电池使用寿命。LTC1872保证输出电压精度± 2.5%。输出出电压只受外部元件性能的限制。为避免N-沟MOSFET工作在低于安全输入电压电平之下,该器
[电源管理]
ISDN数字电话用高压非隔离降压/升压变换器
Vishay Siliconix公司的S121j o ISDN应用设计的-48V到+5V或+3.3V变换器。它所含的集成未接地反馈误差放大器提供直接输出电压稳压。这种方法消除了所需的外部并联稳压器。Si9121也含有高电压耗尽型MOSFET,这可使变换器能直接从高输入总线电压供电而不需要外部启动电路。由于非隔离拓扑结构结合简单的磁设计使Si9121能为完全的ISDN电源提供单片解决方案。为了减少外部元件数,Si9121也含有95kHz振荡器和软启动电路。 图1示出Si9121功能框图。它采用SOIC-8引脚封装。
Si9121特性有:·固定+5V或+3.3V输出
·集成未接地反馈放大器
·片上70V、1.5ΩN-
[电源管理]
基于电感升压开关型变换器的LED驱动电路设计
一、基本电路拓扑与工作原理 基于电感升压开关型变换器的LED驱动电路广泛应用于电池供电的消费类便携电子设备的背光照明中。电感升压变换器基本电路拓扑主要由升压电感器(L1 )、功率开关MOSFET( VT1)、控制电路、升压二极管(VD1 )和输出电容器(C0)组成,如图1(a )所示。
图1电感升压变换器基本电路及其工作原理图
在便携式设各中所使用的DC/DC升压变换器,其控制器和功率MOSFET (VT1)一般都是集成在同一芯片上,有的还将升压二极管(VD1 )也集成在一起,从而使外部元器件数量最少。
当控制器驱动VT1 导通时,VD1截止,L1中的电流不能突变,只能从零开始缓慢线性增
[电源管理]
MAX731开关控制型DCDC升压变换器电路
MAX731开关控制型DCDC升压变换器电路
MAX731为开关控制型DC—DC升压变换器,使用2节5号电池便能产生5V、200mA的直流电压,其转换效率可达82%~87%。MAX731空载时耗电极低(仅2mA),且采用电流型脉宽调制,有较高的输出电压精度,可用于便携式电子仪器、仪表等设备。其典型应用电路如图所示。
[电源管理]
70W、80kHz彩色监视器用升压变换器电路
70W、80kHz彩色监视器用升压变换器电路
图 70W、80kHz彩色监视器用升压变换器电路
图所示的升压变换器电路中,升压电感器L1、升压二极管D1、输入及输出电容C1与C5、功率MOSFET(Q1)和IC1等,是产生损耗的主要元器件。其中,开关Q1所产生的损耗在总损耗中占居支配地位,而IC1产生的损耗则相对较小。为降低变换器损耗,提高效率,主要途径是: (1)选用低开关损耗的MOSFET; (2)选用低等效串联电阻(ESR)的电容器C1和C5; (3)选用低等效电阻的电感线圈L1; (4)选用低导通电阻和低通态电压的二极管D1。 关于L1和输出电容C5数值选择可根据式(7)和式(9)求出。输出电流IO=P
[电源管理]
升压型单相矩阵变换器
摘要:矩阵变换器具有一系列的优点,已成为交-交变换器研究中非常热门的课题,但其电压传输比一直比较低。针对矩阵变换器在目前的拓扑结构下最大的电压传输比仅为0.866,提出了"泵式"矩阵变换器,分析了它的拓扑结构和工作原理,并进行了Matlab仿真,实现了电压传输比的提高。
关键词:电压增益 矩阵变换器 Matlab仿真
矩阵变换器具有一系列优点,但迟迟不能进入实用阶段,其重要的原因之一就在于它的电压传输比比较低。
在现有矩阵变换器的拓扑结构与调制策略基础上,得到的输出输入电压传输比都小于等于1 。通过对矩阵变换器电压传输比进行严格的数学证明可知:在希望得到输出相电压为正弦电压的情况下,最大传输比为0.866 。虽然对现有的调制
[应用]