无功与谐波补偿装置信号采集及分析计算方案

最新更新时间:2006-09-15来源: 国外电子元器件关键字:谐波  电路  采样  电流 手机看文章 扫描二维码
随时随地手机看文章

1 引言
  
随着电力电子装置的广泛应用,电网中的谐波污染日益严重。许多电力电子装置的功率因数很低,给电网带来额外负担并影响供电质量。因而,消除谐波污染和提高功率因数成为电力电子技术中的重要研究课题。现在可行的方案是设置无功与谐波补偿装置。在无功与谐波补偿装置中,需要对系统的三相电源电压、电流信号和负载电流信号进行实时检测、分析和计算;需要根据采集的电压、电流信号算出主电路的开关状态;需要对主电路进行实时控制以达到补偿的效果。笔者设计了一种信号采集及分析计算的方案,它由8通道A/D、D/A转换电路和分别用一个DSP来进行运算和控制的双DSP硬件电路、辅以相应的采样、A/D、D/A转换和数据交换程序来实现。

2 硬件电路组成及其工作原理
  
设计方案的硬件电路由AD7864型模,数转换器、AD7841型数/模转换器、CY7C024型双口RAM、TMS320F2407型和TMS320C33型(以下分别简称为F2407和C33)DSP组成。电路的总体工作过程为:A/D采样电路实时采集系统的三相电源电压、电流和负载电流信号,F2407根据软件计算出的时间间隔启动AD7864对所采集的信号进行模,数转换;然后,F2407通过双口RAM把转换后的数据传给C33,C33对接收到的数据进行运算并把计算出的补偿装置主电路的开关模式传给F2407,F2407根据接收到的开关模式控制主电路的开关状态。本文把电路的总体工作过程分为以下三部分进行详细的介绍。

2.1 AD7864对采集数据进行模/数转换
  
有源滤波器通过实时采集三相电源电压、电流和负载电流计算出指令电流。由于采用全数字化控制,算法比较复杂,而且对实时性、快速性和精确性有很高的要求,为了避免电流和电压采样时间不一致引起有功或无功测量误差,选用了2个AD7864对各相电压和电流同时采样。

  AD7864是一款高速、低功耗、单电源、4路模拟输入同步采样、12位模,数转换器。它具有1个1.65μs的逐次逼近式A/D转换器、4路跟踪,保持放大器、2.5V参考电平、片上时钟振荡器、信号调整电路及1个高速并行接口。

  AD7864可对4个通道的模拟输入信号同步采样,并将4个通道的采样信息保存下来。AD7864的转化启动信号从引脚CONVST输入,上升沿触发。当其有效时,跟踪,保持器被置为“保持”,同时按增序转换被选择的通道(通过软件或硬件选择)。EQC信号表明单个通道转换的结束,而BUSY信号表明被选择的所有通道转换的结束,二者都是低电平有效。

  AD7864具有高速12位数据总线,能直接与16位DSP相连。AD7864与F2407的接口电路如图1所示。其工作过程是首先由F2407对电源电压频率实现数字锁相,产生ADC触发信号同时启动2个AD7864,然后AD7864分别对4个通道进行转换,完成后BUSY信号由高电平变为低电平,而后F2407产生中断并读取经AD7864转换的数据。

  由于使用了2个AD7864,所以将2个BUSY信号通过1个或门接到F2407的外部中断口。当2个AD7864的8个通道都完成转换后,向F2407发出中断信号。F2407响应中断,先选中其中1个ADC,再连续执行4次读ADC操作,就可得到各个通道的采样值;然后对另1个ADC执行同样的操作,即可得到8个通道的同步采样数据。

2.2 AD7841对中间变量进行数/模转换
  由于控制算法均由控制软件完成,各中间变量无法用示波器直接观测,而F2407内部没有DAC,因此选用AD7841作为系统的D/A输出单元,将中间变量转换为模拟信号输出,便于系统的调试和监控。

  AD784l是Analog Devies公司生产的14位数据并行输入,4路模拟输出的D/A转换器。采用双电源±15V供电,参考电压范围为-5V~十5V,输出电压范围为-10V~+10V。

  按照分配给AD7841的I/O地址空间,通过A0、Al、A2选择数据寄存器输入数据,即可在相应的DAC通路上得到模拟输出。

2.3 F2407与C33通过双口RAM进行通信
  本文所述的无功与谐波补偿装置的主控电路采用由F2407和C33构成的双DSP控制电路。C33的运算能力很强,但片内资源和对外I/O端口较少,逻辑处理能力也较弱,主要用于浮点计算和数据处理;而F2407正好相反,其片外接口资源丰富,I/O端口使用方便,但其精度和速度有一定限制,所以用于数据采集和过程控制。2个DSP通过双端口RAM完成数据交换。通过这2个DSP的互补结合,可充分发挥各自的优点,使控制系统达到最佳。

  应用双DSP控制电路涉及双。DSP之间进行数据交换的问题,双DSP间的数据交换由双口RAM实现,图2为数据交换单元的结构框图。CY7C024具备的电路特点和存储特性简化了数据交换单元的电路设计及数据交换协议的实现。在系统设计中,对数据流向做了合理的安排,相应地在双口RAM中开辟了2个缓冲区BUFl和BUF2,其中BUF1作为F2407向C33传递数据的通道,BUF2作为C33向F2407传递数据的通道。


  当F2407的数据需要向C33传递时,F2407将数据写入BUF2,然后向特定地址的信箱MBX2(对F2407,地址为Ox8FFE)写1个任意数,此时由CY7C024内部电路产生、1个中断信号INTL给C33;C33在检测到INTL信号时响应中断,从BUF2读出数据并访问MBX2清除中断信号。当C33处理完数据并需将结果传送给F2407时,将数据存入BUF1,然后再向信箱MBX1(对F2407,地址为0x8FFF)写1个任意数,此时产生中断信号INTR,引起F2407中断;F2407在检测到INTR信号时响应中断,从BUF1读出数据并访问MBX1,清除中断信号。

3 程序设计
  与本设计方案的硬件电路对应的软件程序包括主程序、信号采集及A/D转换中断子程序、D/A转换中断子程序和双DSP通信中断子程序4部分。

  双DSP通信中断子程序和数据采集及A/D转换中断子程序的软件流程如图3和图4所示。


  A/D转换中断子程序如下:
?

4 结束语
  理论分析与实验结果表明,本文介绍的数据采集及分析计算方案能够对三相电源电压、电流和负载电流进行实时准确的检测、分析和计算,从而为无功与谐波自动补偿装置主电路中的四象限变流器提供实时准确的开关信号,保证无功与谐波自动补偿装置的正常工作。

关键字:谐波  电路  采样  电流 编辑: 引用地址:无功与谐波补偿装置信号采集及分析计算方案

上一篇:MAXl320型A/D转换器及其在微机保护中的应用
下一篇:基于18位数模转换器AD760的波形发生器的设计

推荐阅读最新更新时间:2023-10-12 20:12

伺服驱动器中电流采样电路设计
在伺服驱动控制系统中,为实现磁场定向控制,需要至少对两相电机绕组的电流进行采样,这两路电流采样将作为电流反馈信号使伺服驱动实现电流闭环,可以这样说,电流信号采样是伺服控制系统硬件的一个重要模块,也是一大难点。   常规电流采样电路设计   如今,大多数伺服驱动使用采样电阻和线性光耦搭建的一路电流采样电路,如图1所示。   其中,rsense是功率型采样电阻,mc34081为运算放大器,78l05为三端稳压电源。hcpl-7840为线性光耦,其2,3引脚为信号输入端,6,7引脚为信号输出端,在输入端输出端供电电压均为5v的情况下,当2,3引脚输入的差值电压变化时,6,7引脚的输出信号将随着输入信号分别进行递增和递减的线性
[电源管理]
伺服驱动器中<font color='red'>电流</font><font color='red'>采样</font><font color='red'>电路</font>设计
基于FPGA动态背光源及其驱动电路设计
  引言   当代LCD 显示大部分采用的是冷阴极射线荧光灯(CCFL)背光或LED 静态背光,由于CCFL 亮度不易控制并且响应速度慢,造成能源浪费和动态模糊。LED 静态背光效果虽好,但是其耗能也较为严重,另外恒定亮度的背光使得图像的对比度下降,显示效果不理想。对图像RGB 像素进行分析,在某些区域适当地采用低一级亮度的LED 背光,不仅可以节能,而且会扩大图像显示的对比度,消除动态模糊现象。   1 设计方案及其原理   动态背光源表面上是个整体,其实内部在制作原理图时已经将之分成多个区域,分别控制其各自的亮度。可知背光灯的密集度越高,划分的区域越多、面积越小,显示出来的整体效果会越好。但是从成本、经济价值
[电源管理]
基于FPGA动态背光源及其驱动<font color='red'>电路</font>设计
一种晶闸管整流器全关断检测电路
1 引 言   中国环流器2号A(HL—2A)是中国第一个具有偏滤器位形的大型受控核聚变研究装置,其主机由德国ASDEX装置主机主要部件经适当改造而成,其磁场线圈所需的供电系统及其它的配套系统则完全由我院自行研制。 欧姆线圈(OH)在HL—2A中的作用是击穿气体、建立、维持并加热等离子体电流,因而为其供电的欧姆电源在装置实验中起着非常重要的作用。欧姆电源如图1所示,有正负各两组共计四组电源,其中1号和3号整流柜为正组,2号和4号整流柜为负组,正组输出电压1600V,负组800V,两组的输出电流都是30kA。 图1 欧姆电源示意图   随着实验的深入,实验需求参数的不断提高,就要求实现欧姆电源正负组的无环流运行。欧姆电源的
[电源管理]
一种晶闸管整流器全关断检测<font color='red'>电路</font>
TI推出支持集成型MOSFET的大电流PMBus转换器
20A 及 30A SWIFT™ DC/DC降压转换器支持电压、电流以及温度监控。 2014 年 6 月 23 日,北京讯---日前,德州仪器 (TI) 宣布推出业界首批具有 PMBus 接口的 18V、20A 及 30A 同步 DC/DC 降压转换器。该 SWIFT TPS544B20 及 TPS544C20 转换器采用小型 QFN 封装并支持集成型 MOSFET,可在空间有限的高功率密度应用中驱动ASIC,能够充分满足有线及无线通信、企业与云计算以及数据存储系统等不同市场的需求。这些转换器与 TI 屡获殊荣的 WEBENCH® 在线设计工具配合使用,可简化电源转换,加速电源设计进程。 该款高集成转换器支持 0.5%
[电源管理]
实现PSRR测试的无直流偏置端口分析仪
放大器的电源纹波抑制比(PSRR)是分析运算放大器性能时的最通用特征参数之一。例如,放大器电源引脚的噪声源包括寄生电源线路轨迹,及其与放大器吸收的电流相互作用,以及开关电路使用相同电源所产生的噪声。两种噪声源都会在放大器的输入脚上产生电压振幅差异,表现为噪声信号。 在频率上实现特征电源纹波抑制比(PSRR)通常要使用带有直流偏置端口的分析仪,如Agilent的8753设备。例如,要测量负电源纹波抑制比,放大器的-VS脚通过端口1与通过8753偏置口的负直流电压与正弦波叠加。你可以在端口2测量放大器的输出来完成测量。不幸的是,因为分析仪内部的偏压有限,8753并不能测量低于30千赫的频率,另外,多数的PSRR与频率关系曲
[应用]
变频启动的优点和缺点 变频启动电流是额定电流的几倍
  变频启动的优点和缺点   变频启动是一种较为常见的电机启动方式,其优点和缺点如下:   优点:   1. 起动电流小:在启动过程中,变频器可以逐步提高输出频率和电压,让电机由低速慢慢启动,电机启动电流小,起动平稳。   2. 节能环保:相比于传统的直接启动方式,变频启动可以节省大量的能源,减少环境污染。   3. 维护成本低:由于起动时电机启动电流较小,因此对电机、传动机构等的损坏降低,延长了设备的使用寿命,同时运行稳定,减少了设备的维护成本。   4. 可调速:变频器支持对电机转速进行调整,可以根据不同的工作情况和需要来调整额定输出功率和速度的大小,满足不同的工作要求。   缺点:   1. 因为需要额外的变频器设备
[嵌入式]
明阳电路预计前三季度净利超1.08亿元,同比增5.54%-16.03%
10月13日,明阳电路发布2020年前三季度业绩预告。公司前三季度归属于上市公司股东的净利润为10,812.99万元-11,887.68万元,同比增长5.54%-16.03%;第三季度归属于上市公司股东的净利润为2507.61万元-3582.29万元,同比下降30.00%-0.00%。 关于此次业绩变动的原因,明阳电路表示,新型冠状病毒疫情对公司主营业务产生一定影响,但是面对上述不可抗力因素,公司积极应对,专注于提升产品品质,优化产品结构,净利润保持稳健增长;同时, 明阳电路积极引入优秀人才并实施股权激励,人工成本及股份支付等费用增加,叠加美元兑人民币汇率波动影响, 2020年第三季度净利润较上年同期下降。 此外,公司非经常性
[手机便携]
明阳<font color='red'>电路</font>预计前三季度净利超1.08亿元,同比增5.54%-16.03%
基于功率MOSFET的锂电池保护电路设计
  铅酸电池具有安全、便宜、易维护的特点,因此目前仍然广泛的应用于电动自行车。但是铅酸电池污染大、笨重、循环次数少,随着世界各国对环保要求越来越高,铅酸电池的使用会越来越受到限制。磷酸铁锂电池作为一种新型的环保电池,开始逐步的应用到电动车中,并且将成为发展趋势。通常,由于磷酸铁锂电池的特性,在应用中需要对其充放电过程进行保护,以免过充过放或过热,以保证电池安全的工作。短路保护是放电过程中一种极端恶劣的工作条件,本文将介绍功率MOSFET在这种工作状态的特点,以及如何选取功率MOSFET型号和设计合适的驱动电路。   电路结构及应用特点   电动自行车的磷酸铁锂电池保护板的放电电路的简化模型如图1所示。Q1为放电管,使用N沟道增强型
[电源管理]
基于功率MOSFET的锂电池保护<font color='red'>电路</font>设计
小广播
热门活动
换一批
更多
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved