数控机床中的伺服系统分析

发布者:大树下的大白菜y最新更新时间:2011-10-19 关键字:数控机床  伺服系统 手机看文章 扫描二维码
随时随地手机看文章

  一、概述

  伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。

  作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。
 

  二、伺服系统的结构及分类

  从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。

  

 

  图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其他要素来探讨不同伺服系统的技术特性。

  三、进给伺服系统的现状与展望

  进给伺服以数控机床的各坐标为控制对象,产生机床的切削进给运

动。为此,要求进给伺服能快速调节坐标轴的运动速度,并能精确地进行位置控制。具体要求其调速范围宽、位移精度高、稳定性好、动态响应快。根据系统使用的电动机,进给伺服可细分为步进伺服、直流伺服、交流伺服和直线伺服。

  (一)步进伺服系统

  步进伺服是一种用脉冲信号进行控制,并将脉冲信号转换成相应的角位移的控制系统。其角位移与脉冲数成正比,转速与脉冲频率成正比,通过改变脉冲频率可调节电动机的转速。如果停机后某些绕组仍保持通电状态,则系统还具有自锁能力。步进电动机每转一周都有固定的步数,如500步、1000步、50 000步等等,从理论上讲其步距误差不会累计。

  步进伺服结构简单,符合系统数字化发展需要,但精度差、能耗高、速度低,且其功率越大移动速度越低。特别是步进伺服易于失步,使其主要用于速度与精度要求不高的经济型数控机床及旧设备改造。但近年发展起来的恒斩波驱动、PWM驱动、微步驱动、超微步驱动和混合伺服技术,使得步进电动机的高、低频特性得到了很大的提高,特别是随着智能超微步驱动技术的发展,将把步进伺服的性能提高到一个新的水平。[page]

(二)直流伺服系统

 

  直流伺服的工作原理是建立在电磁力定律基础上。与电磁转矩相关的是互相独立的两个变量主磁通与电枢电流,它们分别控制励磁电流与电枢电流,可方便地进行转矩与转速控制。另一方面从控制角度看,直流伺服的控制是一个单输入单输出的单变量控制系统,经典控制理论完全适用于这种系统,因此,直流伺服系统控制简单,调速性能优异,在数控机床的进给驱动中曾占据着主导地位。

  然而,从实际运行考虑,直流伺服电动机引入了机械换向装置。其成本高,故障多,维护困难,经常因碳刷产生的火花而影响生产,并对其他设备产生电磁干扰。同时机械换向器的换向能力,限制了电动机的容量和速度。电动机的电枢在转子上,使得电动机效率低,散热差。为了改善换向能力,减小电枢的漏感,转子变得短粗,影响了系统的动态性能。

  (三)交流伺服系统

  针对直流电动机的缺陷,如果将其做“里翻外”的处理,即把电驱绕组装在定子、转子为永磁部分,由转子轴上的编码器测出磁极位置,就构成了永磁无刷电动机,同时随着矢量控制方法的实用化,使交流伺服系统具有良好的伺服特性。其宽调速范围、高稳速精度、快速动态响应及四象限运行等良好的技术性能,使其动、静态特性已完全可与直流伺服系统相媲美。同时可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。

  目前,在机床进给伺服中采用的主要是永磁同步交流伺服系统,有三种类型:模拟形式、数字形式和软件形式。模拟伺服用途单一,只接收模拟信号,位置控制通常由上位机实现。数字伺服可实现一机多用,如做速度、力矩、位置控制。可接收模拟指令和脉冲指令,各种参数均以数字方式设定,稳定性好。具有较丰富的自诊断、报警功能。软件伺服是基于微处理器的全数字伺服系统。其将各种控制方式和不同规格、功率的伺服电机的监控程序以软件实现。使用时可由用户设定代码与相关的数据即自动进入工作状态。配有数字接口,改变工作方式、更换电动机规格时,只需重设代码即可,故也称万能伺服。

  交流伺服已占据了机床进给伺服的主导地位,并随着新技术的发展而不断完善,具体体现在三个方面。一是系统功率驱动装置中的电力电子器件不断向高频化方向发展,智能化功率模块得到普及与应用;二是基于微处理器嵌入式平台技术的成熟,将促进先进控制算法的应用;三是网络化制造模式的推广及现场总线技术的成熟,将使基于网络的伺服控制成为可能。

  (四)直线伺服系统

  直线伺服系统采用的是一种直接驱动方式(Direct Drive),与传统的旋转传动方式相比,最大特点是取消了电动机到工作台间的一切机械中间传动环节,即把机床进给传动链的长度缩短为零。这种“零传动”方式,带来了旋转驱动方式无法达到的性能指标,如加速度可达3g以上,为传统驱动装置的10~20倍,进给速度是传统的4~5倍。从电动机的工作原理来讲,直线电动机有直流、交流、步进、永磁、电磁、同步和异步等多种方式;而从结构来讲,又有动圈式、动铁式、平板型和圆筒型等形式。目前应用到数控机床上的主要有高精度高频响小行程直线电动机与大推力长行程高精度直线电动机两类。

  直线伺服是高速高精数控机床的理想驱动模式,受到机床厂家的重视,技术发展迅速。在2001年欧洲机床展上,有几十家公司展出直线电动机驱动的高速机床,快移速度达100~120m/min,加速度1.5~2g,其中尤以德国DMG公司与日本MAZAK公司最具代表性。2000年DMG公司已有28种机型采用直线电动机驱动,年产1500多台,约占总产量的1/3。而MAZAK公司最近也将推出基于直线伺服系统的超音速加工中心,切削速度8马赫,主轴最高转速80000r/min,快移速度500m/min,加速度6g。所有这些,都标志着以直线电动机驱动为代表的第二代高速机床,将取代以高速滚珠丝杠驱动为代表的第一代高速机床,并在使用中逐步占据主导地位。

  四、主轴伺服系统的现状及展望

  主轴伺服提供加工各类工件所需的切削功率,因此,只需完成主轴调速及正反转功能。但当要求机床有螺纹加 工、准停和恒线速加工等功能时,对主轴也提出了相应的 位置控制要求,因此,要求其输出功率大,具有恒转矩段 及恒功率段,有准停控制,主轴与进给联动。与进给伺服 一样,主轴伺服经历了从普通三相异步电动机传动到直流主轴传动。随着微处理器技术和大功率晶体管技术的进展,现在又进入了交流主轴伺服系统的时代。

  (一)交流异步伺服系统

  交流异步伺服通过在三相异步电动机的定子绕组中产生幅值、频率可变的正弦电流,该正弦电流产生的旋转磁场与电动机转子所产生的感应电流相互作用,产生电磁转矩,从而实现电动机的旋转。其中,正弦电流的幅值可分解为给定或可调的励磁电流与等效转子力矩电流的矢量和;正弦电流的频率可分解为转子转速与转差之和,以实现矢量化控制。

  交流异步伺服通常有模拟式、数字式两种方式。与模拟式相比,数字式伺服加速特性近似直线,时间短,且可提高主轴定位控制时系统的刚性和精度,操作方便,是机床主轴驱动采用的主要形式。然而交流异步伺服存在两个主要问题:一是转子发热,效率较低,转矩密度较小,体积较大;二是功率因数较低,因此,要获得较宽的恒功率调速范围,要求较大的逆变器容量。

  (二)交流同步伺服系统

  近年来,随着高能低价永磁体的开发和性能的不断提高,使得采用永磁同步调速电动机的交流同步伺服系统的性能日益突出,为解决交流异步伺服存在的问题带来了希望。与采用矢量控制的异步伺服相比,永磁同步电动机转子温度低,轴向连接位置精度高,要求的冷却条件不高,对机床环境的温度影响小,容易达到极小的低限速度。即使在低限速度下,也可作恒转矩运行,特别适合强力切削加工。同时其转矩密度高,转动惯量小,动态响应特性好,特别适合高生产率运行。较容易达到很高的调速比,允许同一机床主轴具有多种加工能力,既可以加工像铝一样的低硬度材料,也可以加工很硬很脆的合金,为机床进行最优切削创造了条件。[page]

(三)电主轴

 

  电主轴是电动机与主轴融合在一起的产物,它将主 轴电动机的定子、转子直接装入主轴组件的内部,电动机的转子即为主轴的旋转部分,由于取消了齿轮变速箱的传动与电动机的连接,实现了主轴系统的一体化、“零传动”。因此,其具有结构紧凑、重量轻、惯性小、动态特性好等优点,并可改善机床的动平衡,避免振动和噪声,在超高速切削机床上得到了广泛的应用。

  从理论上讲,电主轴为一台高速电动机,其既可使用异步交流感应电动机,也可使用永磁同步电动机。电主轴的驱动一般使用矢量控制的变频技术,通常内置一脉冲编码器,来实现厢位控制及与进给的准确配合。由于电主轴的工作转速极高,对其散热、动平衡、润滑等提出了特殊的要求。在应用中必须妥善解决,才能确保电主轴高速运转和精密加工。

  五、结论

  围绕伺服系统动态特性与静态特性的提高,近年来发展了多种伺服驱动技术。可以预见随着超高速切削、超精密加工、网络制造等先进制造技术的发展,具有网络接口的全数字伺服系统、直线电动机及高速电主轴等将成为数控机床行业的关注的热点,并成为伺服系统的发展方向。

 

关键字:数控机床  伺服系统 引用地址:数控机床中的伺服系统分析

上一篇:基于自动识别技术的车间物流系统的设计与分析
下一篇:PC+TurboPMAC实现开放式数控系统

推荐阅读最新更新时间:2024-05-02 21:39

主流的数控机床联网通信协议你都知道吗
机床的联网,或者更广义地说数控设备的联网,已经成为了现代制造业的信息化管理的重要基础。不幸的是,历史上机床联网的通信协议也如整个工业控制领域的通信协议一样,品种门类繁杂而凌乱,表面上的统一和各种厂家的自定义掺杂在一起,也为工业信息化的集成商们带来了一定的麻烦,或者说“生意”。 最近十年来数控机床行业的发展趋势上看,总的来说机床联网协议是朝着开放和可互操作发展的,但长期仍然是多种并存。目前比较占主流的联网协议中,常用于局域网的有OPC UA和MTConnect,当然也有沿用在工业控制中有一定市场份额的MODBUS/TCP和PROFINET。 1.OPC UA 由OPC基金会(OPC Foundation)创建,目前在欧洲厂商
[嵌入式]
模糊PID控制器在伺服系统中的应用
0 引言   传统PID(比例、积分和微分)控制原理简单,使用方便,适应性强,可以广泛应用于各种工业过程控制领域。但是PID控制器也存在参数调节需要一定过程,最优参数选取比较麻烦的缺点,对一些系统参数会变化的过程,PID控制就无法有效地对系统进行在线控制。不能满足在系统参数发生变化时PID参数随之发生相应改变的要求,严重的影响了控制效果。本文介绍了基于车载伺服系统的模糊PID控制,它不需要被控对象的数学模型,能够在线实时修正参数,使控制器适应被控对象参数的任何变化。并对其进行仿真验证,结果表明模糊PID控制使系统的性能得到了明显的改善。 1 传统PID与模糊PID的比较   1.1 PID控制   PID控制器问世至今凭
[嵌入式]
变频器在数控机床主轴上的应用
数控机床 数字控制机床,简称数控机床(NC,NumericalControl),是三十年来综合应用集机械、电气、液压、气动、微电子和信息等多项技术为一体的机电一体化产品,在机械制造设备中具有高精度、高效率、高自动化和高柔性化等优点。本文主要介绍易驱ED3000系列变频器在数控机床上的优越性。 数控机床简介 数控机床的技术水平高低及其在金属切削加工机床产量和总拥有量的百分比,是衡量一个国家国民经济发展和工业制造整体水平的重要标志之一。数控车床是数控机床的主要品种之一,它在数控机床中占有非常重要的位置,几十年来一直受到世界各国的普遍重视,并得到了迅速的发展。主轴是车床构成中一个重要的部分,对于提高加工效率,扩大加工材料范围,提升加
[嵌入式]
伺服系统的发展和应用常识
随着信息、通讯与自动化技术的发展,种类繁多的自动控制装置逐渐进进了人们的日常生活。网络通讯技术不仅为人们提供了方便的通讯手段,实际上也为各式各样的电子裝置提供了简易可靠的通讯渠道,借助于新式的网络通讯技术与计算功能强大的数字信号处理器芯片(DSP),可以开展出多种具有基本智能的信息家电设备(smart information appliance),例如可以帮助清洁工作的机器人、可供娱乐的电子机械宠物等等。这些结合机械、电子、通讯、控制、信息技术融合装置的核心部分就是具有网络界面的伺服系统控制器(network servo controller)。伺服技术已广泛的应用于我们的日常生活,例如光碟机光学读取头的伺服控制、远控飞机的机翼控
[嵌入式]
<font color='red'>伺服系统</font>的发展和应用常识
PLC在数控机床(CNC)上的应用
一、引言   随着可编程控制器( PLC )技术的发展,它在工业自动控制领域应用愈加广泛,由于PLC是专为在工业环境下应用而设计的一种工业控制计算机,可编程控制器((PLC)广泛应用于 数控机床 等工业控制中。它在控制性能、组机周期和硬件成本等方面所表现出的综合优势是其他工控产品难以比拟的,因而在工业自动化、过程控制、数据处理等方面的应用也越来越多。   在数控机床的 控制系统 中,数字控制部分包括对各坐标轴位置的连续控制,这个任务由计算机数控装置实现:顺序控制是在数控机床运行过程中,根据数控机床内部标志以及机床各操作开关实际运行的信号状态,按照预先规定的逻辑顺序,对诸如主轴转速((S功能),对主轴正J反转和启动/停止、刀库管理(
[嵌入式]
中国市场哪里最赚钱,伺服马达算一个!
新能源在未来工业发展进程中,会渐渐受到各国的重视;高科技产业的无限发展空间带给电子专用设备行业更多的机遇。医学进步为医疗机械的创新提供更新挑战;人们对生活的高追求来给汽车行业更多创造空间。这些科技高端行业,均为伺服系统带来无限商机。    国外永磁交流伺服电动机的发展比国内早10~15年左右,已基本上是一门成熟的先进技术,正在朝大功率甚至超大功率发展。微电子技术,现代控制理论的采用,新型的功率器件,电子元器件,高性能磁性材料的发展反过来又促进了永磁无刷伺服电动机的发展,使其走入健康发展的良性循环。    到目前,国产伺服电机及其全数字式伺服驱动器基本自主开发成功,也已形成商品化和批量生产能力。国内对精密伺服电机控制系统的
[嵌入式]
中国企业如何晋升工业自动化产业“主角”?
从目前的行业现状来看,中国企业在自动化这台大戏中依然处于“配角”的位置。创新能力不足、人才不够、知识产权保护薄弱等对中国自动化发展形成了阻碍。虽然中国正在极力推进工业转型升级,但在国内工业自动化市场上扛着大旗占领阵地的依然是国外品牌。 从资本市场反观实体经济常常是一个不错的视角。以国内上市公司———秦川发展为例,该公司规划生产机器人关节减速器的消息一经传出,就引发了连续三个一字涨停,有趣的是,该公司几乎是同时传出的整体上市的消息反而没有受到如此追捧。 工业自动化的市场之热由此可见一斑。 机器人与3D打印 自动化又称电控或工控,几乎有电的地方都会用到,在专业人员眼中这几乎可以算是一个古老的行业。事实上,从农业、工业到
[嵌入式]
工业机器人与数控机床集成的四大应用
(文章来源:新战略机器人网) 汽车行业过去一直是机器人应用最主要领域,随着自动化需求的提升,工业机器人应用得到更大的拓展,除传统的应用外,机器人在机床上下料、搬运码垛、打磨、喷涂、装配等领域也得到了广泛应用。金属成形机床是机床的重要组成部分,成形加工通常与高劳动强度,噪声,金属粉尘等联系在一起,有时处于高温高湿甚至有污染的环境中,工作简单枯燥,企业招人困难。工业机器人与成形机床集成,不仅可以解决企业用人问题,同时也能提高加工效率和安全性,提升加工精度,具有很大的发展空间。 机器人折弯集成应用主要有两种方式。一是以折弯机为中心,机器人配置真空吸盘,磁力分张上料架、定位台、下料台、翻转架形成折弯单元。二是机器人与设备或数控转
[机器人]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved