满足现代电动/混合汽车应用的充电泵电路

发布者:BoldDreamer最新更新时间:2012-05-07 来源: 21ic 关键字:电动混合汽车  充电泵  运算放大器 手机看文章 扫描二维码
随时随地手机看文章

除传统的铅酸电池外,现代电动汽车/混合汽车还常常有一个大电容器(40F或更大)作为备用电源,该电容器安放在后座下面,可确保额外驾驶10~15分钟的时间,在这段时间内驾驶者就能够到达下一个充电站或加油站。

铅酸电池仅能放电至8V左右,而电容器能放电至0V,电容器的这种能力需要配一个能测量0V输入的电流检测放大器来实现。

然而,大多数高端电流检测放大器工作的共模输入范围和电源电压范围有限。例如,MAX4081的共模输入和电源电压范围为76V~4.5V。在双向(充电/放电)电流检测应用中,设置零负载电流点(即电压输出对应零负载电流,此处VSENSE=0V)时,通常在参考输入端(REF) 接一个外部参考(例如+2.5V)。对于MAX4081,较低的4.5V共模限制常常使其不能用于需要电流检测接近于地的应用中。

设计师可通过在电路中接一个充电泵来解决这个问题(图1)。微型充电泵(IC2)的供电电压为5V,这与电流检测放大器一样。充电泵(5V)的输出用作IC1的“地(GND)”引脚的负电源电压。IC1的REFA和REFB接至电路的“地”。

这样,IC1的内部运算放大器(A2)就工作于5V电源轨(幅度为10V),其同相输入(REF引脚)位于两轨间的0V。VSENSE=0V时,输出电压为0V。VSENSE于是随负载电流而增加,根据器件型号的增益后缀F、T或S的不同,分别产生5倍、20倍或60倍的输出。这样,有效共模范围扩展到了0V~+70V,而原始技术参数未变(VOS<0.6 mV,增益误差<0.6%)。[page]

对图1电路的测试表明,电流检测放大器的共模电压(将“地”接至5V)可降至2.8V(图2)。与之相比,标准应用(GND接至0V)中的共模电压可降至+2.3V。然而,将REFA和REFB短接至GND时,输出在GND上下的摆幅达到5V。图3给出了在整个检测电压范围内共模电压为0V时IC1的输出。

IC1的典型供电电流(103?A)对IC2来说构成了一个小的负载电流,可防止其输出端的过载和电压下降。要特别注意输出跌至GND以下时的情况。这时,负载电流从IC1的GND端流出,然后流入充电泵,充电泵负输出可能因此下降(升向0V)。一个解决办法是,可在充电泵中采用更大的电容器或者限制检测放大器的输出电压。

关键字:电动混合汽车  充电泵  运算放大器 引用地址:满足现代电动/混合汽车应用的充电泵电路

上一篇:功率器件在混合动力汽车(HEV)中的应用
下一篇:什么是电子制动系统

推荐阅读最新更新时间:2024-05-02 22:02

Vishay发布用于电动和插电式混合动力汽车的新款电容器
近日,Vishay Intertechnology, Inc.宣布,推出通过AEC-Q200认证的,用于电动和插电式混合动力汽车的交流线路的新系列圆片陶瓷安规电容器---AY2系列。电容器符合IEC 60384-14.3标准第三版,具有Class X1(440VAC)和Y2(300VAC)汽车应用所需的高可靠性。 AY2系列采用U2J、Y5S和Y5U陶瓷介质,适用于电动汽车和插电式混合动力电动汽车(PHEV)的在板充电器和电池管理,以及高可靠性工业应用。电容器的容量为10pF~4700pF,在-55℃~+125℃的温度范围内,公差低至±10%。 新的Vishay AY2电容器的性能无可匹敌:可承受超过2000次的温度循环,
[嵌入式]
运算放大器的原理
  运放如上图有两个输入端a,b和一个输出端o.也称为倒向输入端(反相输入端),非倒向输入端(同相输入端)和输出端.当电压加U-加在a端和公共端(公共端是电压的零位,它相当于电路中的参考结点.)之间,且其实际方向从a 端指向公共端时,输出电压U实际方向则自公共端指向o端,即两者的方向正好相反.当输入电压U+加在b端和公共端之间,U与U+两者的实际方向相对公共端恰好相同.为了区别起见,a端和b 端分别用"-"和"+"号标出,但不要将它们误认为电压参考方向的正负极性.电压的正负极性应另外标出或用箭头表示.反转放大器和非反转放大器如下图:   一般可将运放简单地视为:具有一个信号输出端口(Out)和同相、反相两个高阻抗输入端的高增
[电源管理]
<font color='red'>运算放大器</font>的原理
采用运算放大器的基准电压源
采用运算放大器的基准电压源:
[电源管理]
采用<font color='red'>运算放大器</font>的基准电压源
怎么用运算放大器电路精确控制光的强度
在利用光来控制一个过程的应用中,要长期保持工厂设定的发光强度需要一个控制电路来监控发光状况,并控制供给光发射器件的电流以保持输出恒定,采用一个简单的运算放大器电路就可为许多应用提供精确的光强度。即便发光器件老化,通过调整LED电流,一个控制环也可维持恒定的光强度。 本文讨论了该电路的一个实例: 在很多利用光来控制一个过程的应用中,维持恒定的光强度至关重要。有些系统采用简单的LED或激光二极管作为光源,但是随着时间的推移,即便最初校准得很好的光源也会变差。随着LED的老化,其电流-发光转换比率会降低,发光强度也会变弱。要长期保持工厂设定的发光强度需要一个控制电路来监控发光状况,并控制供给光发射器件的电流以保持输出恒定。这种配
[模拟电子]
怎么用<font color='red'>运算放大器</font>电路精确控制光的强度
运算放大器构成的低压差直流稳压电源
   1 引言   稳压电源模块在电路中使用广泛,目前流行的如LM78、ASM117系列等,多数只有3个引脚,结构简单,使用方便。通常输入与输出之间的压差大于2 V才能正常工作,但对较低电压电池供电的场合。一般增加2 V的供电电源需增加20%~40%(对应输出3 V或5 V)的成本和体积。用开关电源原理制作的低压差模块(如MAX605),可在输入电压与输出电压近乎相等的情况下输出稳定的电压,但对测力等电路需电源纹波较小的情况。针对上述问题。利用分立器件设计一种低压差稳压电源电路。电路器件选用常规器件,成本低。结构简单。实际电路经实验测试,具有很好的负载特性和电压稳定性。    2 电路工作原理   图1为低压层直流
[电源管理]
如何测量运算放大器的输入电容以尽可能降低噪声
如何测量运算放大器的输入电容以尽可能降低噪声 问题: 在测量运算放大器输入电容时,应关注哪些方面? 答案: 在ADI看来,必须确保测量精度不受PCB或测试装置的杂散电容和电感影响。您可以通过使用低电容探头、在PCB上使用短连接线,并且避免在信号走线下大面积铺地来尽可能规避这些问题。 如今,运算放大器已被广泛用于各种电子电路中。它们用于小电压的放大,以进一步执行信号处理。烟雾探测器、光电二极管跨阻放大器、医疗器械,甚至工业控制系统等应用都需要尽可能低的运算放大器输入电容,因为这会影响噪声增益(Noise Gain),进而影响系统的稳定性,特别是具有高频率和高增益的系统。 为了尽可能提高相应电路的精度,
[模拟电子]
如何测量<font color='red'>运算放大器</font>的输入电容以尽可能降低噪声
电动汽车混合动力汽车技术现状
  总体目标:本项目的核心功能是确定电力电子学。和电机技术现状,找出障碍和差距确定优先/确定研发机会。   提供选择电动汽车和混合动力汽车技术的现状通过对设计、包装、制造的评估,以及综合测试期间的性能。
[嵌入式]
<font color='red'>电动</font><font color='red'>汽车</font>和<font color='red'>混合</font>动力<font color='red'>汽车</font>技术现状
纳芯微通用运放系列添新品:低压NSOPA8xxx为汽车与工业应用注入新动力
2024年4月12日,上海 —— 自年初成功推出高压通用运算放大器NSOPA9xxx系列后,纳芯微NSOPA系列再添新品,推出低压5.5V通用运算放大器NSOPA8xxx系列 。这一产品发布,不仅丰富了纳芯微在汽车电子和泛能源(工业新能源)领域的产品组合,更为广大客户提供更广泛和灵活的选择。 低压通用运算放大器产品凭借其出色的性能,在汽车和工业系统中发挥着至关重要的作用。它能够精准地调理电压、电流、温度等信号,确保系统稳定、高效运行。在汽车领域,该产品广泛应用于三电系统(OBC/DC-DC/PDU)、主驱逆变器、电池管理系统BMS、热管理、车身控制BCM等关键环节;在工业领域,它同样展现出卓越的性能,适用于工业自动化、光伏逆变
[模拟电子]
纳芯微通用运放系列添新品:低压NSOPA8xxx为<font color='red'>汽车</font>与工业应用注入新动力
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved