基于滑模控制的异步电机无速度传感器DTC研究

发布者:shtlsw最新更新时间:2012-07-25 来源: 现代电子技术 关键字:滑模控制  异步电机  无速度传感器  DTC 手机看文章 扫描二维码
随时随地手机看文章
    直接转矩控制(DTC)是继矢量控制之后发展起来的一种高性能的交流调速控制理论,该理论自1985年提出以来,就以新颖的控制思想、简洁明了的系统结构、优良的动、静态性能而得到了广泛的关注。无速度传感器技术与直接转矩控制技术的结合进一步提高了电机控制系统的性能,是目前交流调速领域的研究热点和发展趋势。
    目前较为常见的无速度传感器转速辨识算法有模型参考自适应法、全阶磁链观测器、卡尔曼滤波、人工智能等。模型参考自适应和全阶磁链观测法通过合理的参数选择能够得到较理想的控制效果,但在转速估算过程中需要用到转速信息,转速误差反馈到计算过程中,影响计算精度;卡尔曼滤波估算的转速精确度高,但计算量大,计算时间长;人工智能法需要积累大量的专家知识,系统设计较为复杂。文献提出了一种基于滑模变结构控制的无速度传感器控制技术,建立了控制模型,分析了滑模存在的条件,但所建立的滑模控制器结构复杂,引入的参数过多;文献提出的滑模速度辨识算法用到两个电流滑模观测器,电流估算过程需要用到转子时间常数和转速等信息,对转速的精确辨识产生影响。
    文中应用滑模变结构控制理论,提出了一种结构简单的速度辨识算法,运用滑模控制理论对定子电流和转子磁链进行估算,转子磁链的估算不涉及转子时间常数和转速等信息,提高了系统的鲁棒性。利用Lyapunov稳定性原理分析了算法的稳定性,并结合空间电压矢量脉宽调制技术(SVPWM)和直接转矩控制技术(DTC),建立了一种新型的无速度传感器控制系统。仿真结果表明,该方法能很好的实现对转速的辨识和对转矩、磁链的控制。

1 基于空间电压矢量的直接转矩控制
    直接转矩控制通过检测电机定子电压和电流,借助瞬时空间矢量理论计算电机的磁链和转矩,并根据与给定值比较所得的误差,实现对磁链和转矩的调节。磁链和转矩调节输出的信号经过空间电压矢量脉宽调制的处理,得到恰好能够补偿磁链和转矩误差的控制量,用于对电机进行控制,使得磁链和转矩构成闭环控制,提高控制性能。在定子磁链坐标系下异步电机的状态方程如下:
   
    其中us和is分别是定子电压和定子电流;Rs是定子电阻;ψ是定子磁链;ωψs是定子磁链角速度。
    定子电压的两个正交分量分别为:
   
   
    式(2)表明,定子磁链的控制可以通过对定子电压分量usd的调节来实现。
    在所设定的参考坐标系下,电机转矩方程为:
   
    式(5)表明,通过对定子电压分量usq的调节可以实现对转矩的直接控制。

2 滑模控制器原理
    文中所提出的滑模控制器原理框图如图1所示。


    采用滑模控制器分别对磁链和转矩误差进行调节,磁链、转矩误差调节器的输出即为定子磁链旋转坐标系中控制定子磁链幅值和定子磁链矢量旋转速度的两个定子电压分量。为了实现对转矩和磁链快速而又准确的控制,根据滑模控制理论设计了两个结构简单的滑模控制器分别对磁链和转矩误差进行控制,原理如下:
   
    其中,为磁链误差;为转矩误差;sgn为符号函数。式(6)和(7)的稳定性通过Lyapunov稳定性定理进行证明,其验证与文献中的方法类似,系数k1和k2是两个正数,对这两个系数合理的选择能够使得系统对磁链和转矩误差的控制更加准确。为了充分利用电动机,在实际运行中保持定子磁链的幅值为额定值,稳态时,定子磁链旋转角速度为:
   
    式中δ表示负载角,可以看出定子磁链的旋转速度与转子磁链旋转速度和负载角的变化有关,而负载角的变化与转矩变换有关,且两者变化方向一致,所以负载角的变化量可以通过转矩的变化量来进行确定。得到定子电压的两个分量之后,通过坐标变换和空间电压矢量脉宽调制,得到所需的电信号。[page]

3 速度观测器的设计
3.1 观测器原理
    以定子电流和转子磁链作为电机的状态变量,在定子两相坐标系下异步电机的数学模型可以表示为:
   
    其中,Iαs,Iβs为定子电流分量;λαr,λβr为转子磁链分量;uαs,uβs为定子电压分量;Ls为定子电感;Lr为转子电感;Lm为互感;为漏感系数;Tr=LR/Rr为转子时间常数;Rr为转子电阻;ωr为电机转速;。定义S:
    
    式(9)和(10)都包含S项,且在α和β分量上的耦合项也完全相同。针对这一特点,文中采用滑模函数φαr,φβr对电流和磁链进行调节,得到的电流和磁链用于对转速进行估算,构成无速度传感器转速估算模块。在收敛状态下,滑模函数的值即是矩阵S的估算值。

    当误差向量到达滑模切换面sn=0时,观测电流收敛为实际电流,即,此时磁链估算就是一个对滑模函数的纯积分运算,而不需要用到转子时间常数和转速等信息。式(11)~(16)即为所设计的速度观测器的主要结构,如图2所示。由于滑模变结构控制自身所具有的开关特性,在控制过程中会受到符号函数值的切换所带来的震荡噪声的影响,利用饱和函数sat()代替系统中的符号函数可以有效减小这一不利因素。下式中△是一个很小的常数

    式(13)给出了磁链的估算方法,即通过对滑模函数的积分来得到磁链。由滑模变结构控制理论可知,在磁链控制过程中滑模函数的取值是高频率地在u0和-u0之间进行切换,这种强烈的非线性切换增加了系统分析的难度,代之以一种连续线性输入,将使系统的分析和观测器的设计得到很大程度的简化。运用滑模控制理论中的“等效控制”原理,得到磁链的等效估算法:
    
    是滑模函数的等效控制函数,低通滤波系数的选择须符合低通滤波器设计和滑模观测器设计的要求,μ值越大,转速波动越小,但μ值当足够小而使得信号低频部分不失真。结合式(17)和(18)可以得到电机在无速度传感器条件下的估算转速为:
    
    应用滑模变结构控制理论设计的电流估算模块和磁链估算模块结构简单,能够为速度估算提供精确的输入,使整个速度观测器在结构上简单,在估算精度上能达到很理想的效果。
3.2 观测器稳定性验证
    式(14)中u0的选择必须保证所设计的观测器在Lyapunov稳定性理论下的收敛性。假设滑模速度观测器的Lyapunov函数为:

    其中A=ηλαr+ωrλβr+ηLmIαs,B=ηλβr-ωrλαr+ηLmIβs。当u0满足上述要求时,文中所设计的观测器是稳定的。在稳定性条件范围内,不大的u0波动对仿真速度和控制结果影响很小,说明了系统的鲁棒性,但值过小系统本身不稳定,处于强烈的振荡状态,u0值过大会使仿真速度有很大程度的减慢。

4 仿真结果及分析
    为了验证文中所提出的基于滑模控制的异步电机无速度传感器DTC控制系统的可行性,利用MATLAB/Simulink软件搭建了整个控制系统并对其进行了仿真实验。该系统采用转矩和磁链的双闭环控制,其中滑模控制器根据转矩和磁链误差以及转速,控制得到电机所需要的参考电压,参考电压再由空间电压矢量脉宽调制(SVPWM)进行优化处理,闭环后能够有效的减小转矩和磁链的脉动。实验所采用的异步电机的各项参数如表1所示。

    系统在空载状态下启动,运行一段时间以后加上5 N·m的负载,得到的仿真结果如图3所示。系统在5 N·m的负载状态下启动,运行一段时间以后将负载增加到10 N·m,得到的仿真结果如图4所示。

    图3(a)表示电机空载启动,达到给定转速800 r/min后,在0.25 s时突加5 N·m的负载转矩,并同时将给定转速升为1 000 r/min时的电机转速辨识曲线。图4(a)表示电机在5 N·m的负载状态下启动,达到给定转速800 r/min后,在0.25 s时将负载突加至10 N·m,并同时将给定转速升为1 000 r/min时的电机转速辨识曲线。从曲线可以看出,在空载启动条件下,速度观测器辨识得到的速度无论是在启动阶段还是在稳态运行阶段都能很好的跟踪实际的转速,估算转速和实际转速曲线基本重合;和空载启动相比,在加负载启动条件下,电机启动的瞬间观测器辨识得到的转速和实际转速之间存在一定的误差,之后的动态阶段和稳态运行阶段辨识转速都能很好的跟踪实际转速。仿真结果说明根据滑模原理设计出的速度观测器无论是在动态过程还是稳态过程,对电机转速都具有很好的辨识能力、良好的跟踪性能和抗干扰能力。
    图3(b)是电机空载启动,运行一段时间后加负载得到的电机转矩响应曲线,图4(b)是电机负载启动,运行一段时间后突变负载得到的电机转矩响应曲线。从曲线可以看出,在空载启动时,启动转矩波动较小,转矩达到稳态需要的时间短;在负载条件下启动时,启动瞬间和突然增加负载时电机转矩波动较大,但转矩的整体响应性能还是很好。仿真结果说明在两种启动状态下,转矩都具有快速的响应能力,转矩误差小,带载能力强。图3(c)和图4(c)是两种启动状态下电机的电流曲线,从曲线可以看出,除了负载启动阶段电流波动较大以外,在运行过程中得到的电流都很光滑。

5 结论
    文中建立了滑模控制器和滑模速度观测器,运用Lyapunov稳定性理论推出了模型收敛的稳定性条件。滑模控制器和空间电压矢量脉宽调制技术的结合,使得作用于电机的电压控制信号得到了更好的优化,滑模速度观测器减少了电机参数对系统的影响,提高了转速辨识的精度。仿真结果表明这种方法能够很好的实现电机转速的辨识,具有对参数变化的鲁棒性。

关键字:滑模控制  异步电机  无速度传感器  DTC 引用地址:基于滑模控制的异步电机无速度传感器DTC研究

上一篇:水厂全分布式管控一体化网络前端测控系统的设计与实现
下一篇:基于Taylor展开法整定MIC-PID控制器参数

推荐阅读最新更新时间:2024-05-02 22:13

基于TMS320LF2407A 和AT89S52 三相异步电机双闭环调速控制系统设计
摘 要: 针对某装备中三相交流异步电机调速的要求, 以 TMS320LF2407 A 和AT89S52 为核心采用磁场定向控制策略设计了一电流、转速双闭环调速控制系统, 给出了硬件原理框图、关键器件、设计思想和程序流程图。实验结果表明, 该控制系统具有动态响应快, 控制精度高, 实时显示, 数据存储, 抗干扰强等优点。 0  引 言     三相交流异步电机以其结构简单, 体积小, 重量轻,价格低, 维修方便等优点, 广泛应用于武器装备、给料系统、数控机床、柔性制造技术、各种自动化设备等领域,其转速控制系统性能的优劣直接决定了设备性能的发挥。随着高性能微处理器及新型电力电子器件的出现,使得应用全控型电力电子器件和空间矢量( SVP
[工业控制]
基于MRAS的永磁同步电机矢量控制系统仿真研究
在高性能的交流电机变频调速系统中,不管是采用矢量控制还是直接转矩控制,转速的观测和闭环控制环节是必不可少的。通常,采用光电码盘等速度传感器进行转速检测,并反馈转速信号。但是,速度传感器的安装给系统带来一些缺陷: 1)增加系统的成本,码盘精度越高,价格越贵; 2)码盘在电机轴上的安装存在同心度问题,安装不当将影响测速精度; 3)增加了电机轴向设备,给电机的维护带来一定困难; 4)在恶劣的环境下无法工作,且码盘工作精度易受环境条件的影响。 因此,越来越多的学者将目光投向了无速度传感器控制系统的研究。现今已经有许多方法可以对电机转速进行估计,主要有:基于电动机数学模型计算出转速;利用感应电动势和磁链计算速度;运用模型参考自
[嵌入式]
三相异步电机绕组短路现象及处理方法
  三相异步电机绕组短路现象   (1)外部观察法。观察接线盒、绕组端部有无烧焦,绕组过热后留下深褐色,并有臭味。   (2)探温检查法。空载运行20分钟(发现异常时应马上停止),用手背摸绕组各部分是否超过正常温度。   (3)通电实验法。用电流表测量,若某相电流过大,说明该相有短路处。   (4)电桥检查。测量个绕组直流电阻,一般相差不应超过5%以上,如超过,则电阻小的一相有短路故障。   (5)短路侦察器法。被测绕组有短路,则钢片就会产生振动。   (6)万用表或兆欧表法。测任意两相绕组相间的绝缘电阻,若读数极小或为零,说明该二相绕组相间有短路。   (7)电压降法。把三绕组串联后通入低压安全交流电,测得读数小的一组有短路故障
[嵌入式]
异步电机速度传感器矢量控制系统研究
  对于高性能的磁场定向控制系统,速度闭环是必不可少的,转速闭环需要实时的电机转速,目前速度反馈量的检测多是采用光电脉冲编码器、旋转变压器或测速发电机。但是,许多场合下不允许安装任何速度传感器,此外安装速度传感器在一定程度上降低了系统的可靠性。因此,无速度传感器控制的高性能通用变频器是当前全世界自动化技术和节能应用中受到普遍关心的产品和开发课题。无速度传感器磁场定向矢量控制技术的核心是如何准确的获取磁场定向角以及电机的转速信息。2000年,日本电气学会调查了日本各大电气公司生产的无速度传感器控制的通用变频器,把无速度传感器控制方式分为4类:定子电流转矩分量误差补偿法;感应电动势计算法;模型参考自适应(MRAS)法;转子磁链角速度计
[工业控制]
单相异步电机电容怎么接_单相异步电机电容坏了有什么表现
  单相异步电机电容怎么接   单相异步电机通常需要一个启动电容和一个运行电容,它们需要分别接到电机的起始和运行电路中。   具体来说,启动电容通常是在电机启动时使用,用于产生旋转磁场,以启动电机。启动电容的接法取决于电机的类型和规格,一般在电机上会标注启动电容的参数和接线方式   运行电容通常是在电机启动后继续运行时使用,用于提高电机的效率和功率因数。运行电容的接法也取决于电机的类型和规格,一般在电机上会标注运行电容的参数和接线方式。   需要注意的是,电容的选择应该与电机的功率匹配,否则会影响电机的性能和寿命。因此,在更换电容时,应选择与原来的电容参数相同的电容。   单相异步电机怎么接电源   单相异步电机接电源
[嵌入式]
三电平DTC原理介绍和仿真分析
本文针对传统两电平SVPWM直接转矩控制系统转矩脉动大、响应慢和驱动功率不足的问题,介绍了三电平逆变器的原理及其应用于异步电 机直接转矩控制的具体方法,通过Matlab仿真验证了其可行性与优越性,结果显示该控制方法具有动态响应快、抗扰性强、转矩脉动 小、谐波分量少、开关频率稳定等优点,对提高异步电机直接转矩控制系统的性能以及减小开关管的损耗有一定的成效。 一、传统DTC原理介绍和仿真分析 1.1 DTC原理及仿真 图1-1 直接转矩控制框图 DTC基于定子磁链的位置信号以及转矩与磁链幅值的误差信号直接离线查找矢量表,并将所选择的电压矢量通过变频器作用于电机。 图1-2感应电机DTC系统开关表 图1-3 DTC整体仿
[嵌入式]
三电平<font color='red'>DTC</font>原理介绍和仿真分析
同步与异步电机的区别 如何判断电机好坏
  同步与异步电机的区别   同步电机和异步电机都属于交流电动机,其主要区别在于工作原理和运行特性。   工作原理不同:同步电机是通过与交流电源同步转动的电机,其转子上有一个恒定的磁场,与定子中的旋转磁场同步转动。而异步电机则是通过感应电流产生转矩,其转子上没有恒定的磁场。   运行特性不同:同步电机的转速与电源频率和极对数有关,因此在额定负载下运行时,其速度恒定,且转矩为零。而异步电机则可以提供较高的起动转矩,转速随负载变化而改变。   结构不同:同步电机的转子结构比较简单,通常由一个磁极组成;而异步电机的转子通常由导体绕组组成,并在转子上加上了铁芯或铝杆,以提高转子的强度和效率。   应用场合不同:同步电机通常用于精密控制
[嵌入式]
变频器在变频调速时对普通异步电机的影响
调速电机就其设计初衷而言是专为交流调速而用的,但是变频调速的兴起最直接的原因就是普通异步电机简单的结构、低廉的成本和方便的调速。如果说变频调速必须要配用变频专用电机的话,那么就产生了一个矛盾,变频调速固有的简单、坚固、耐用性不是没有了吗? 变频调速时对电机及其效能产生的影响变频调速不论采用什么样的控制方法其输出到电机端上的电压脉冲是非正弦的。所以普通异步电机在非正弦波下的运行特性分析就是变频调速时对电机产生的影响。 主要有以下几个方面: 电机的损耗和效率非正弦电源下运行的电机,除了基波产生的正常损耗外,还将出现许多附加损耗。主要表现在定子铜损、转子铜损和铁损的增加,从而影响电机的效率。 1、定子铜损在定子绕组中出现
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved