基于RFID与CAN的煤矿井下人员定位系统研究

发布者:SerendipityDawn最新更新时间:2012-08-10 来源: 中国电气自动化网关键字:RFID  CAN  人员定位系统 手机看文章 扫描二维码
随时随地手机看文章
    目前,煤矿井下普遍存在入井人员管理困难,管理人员难以及时掌握井下人员的动态分布及作业情况,一旦事故发生,对井下人员的抢救缺乏可靠信息,抢险救灾、安全救护的效率低。引入和运用煤矿井下人员定位系统,工作人员佩戴的电子标签通过井下监控节点向监控中心传送他们的位置信息,实时掌握每个人在井下的位置及活动轨迹,对煤矿的安全生产将有积极作用,在一定程度上减少人员伤亡。平时,上传的位置信息也可以用做工作人员的考勤记录。

1 射频识别技术

1.1 射频识别发展
    RFID是20世纪90年代兴起的一种非接触式的新型自动识别技术, 它利用无线传输方式进行双向数据通信, 进而达到自动识别并交换信息的目的。近年来, 自动识别技术得到了快速普及和推广, 自动识别方法多种多样: 条形码是一种应用广泛、廉价的自动识别术, 但条形码信息量小, 不能改写; 有触点排的IC卡是电子数据载体最普遍的结构, 但在许多情况下, 机械触点的接通是不可靠的;RF ID却可以让物品实现真正的自动化管理, 其优势非常明显: 存储信息量大, 每一个产品拥有独一无二的ID号; 读写不需要光源, 可以透过外部材料读取数据; 使用寿命长,能在恶劣环境下工作; 能够轻易嵌入或附着在不同形状、类型的产品上; 读取距离更远, 可以写入及存取数据, 实现标签的内容动态改变; 能够同时处理多个标签; 标签的数据存取有密码保护, 安全性更高; 可以对RF ID标签所附着的物体进行追踪定位。

1.2 射频识别系统组成
    射频识别系统主要由Tag、读写器、天线等组成, 一般还需要其他软硬件的支持。
    1) 读写器。读写器可以简化为两个基本的功能模块:高频接口模块(发送器和接收器)和控制单元两部分。读写器读取电子标签中的信息, 然后将信息发送到地面监控中心。
    2) 无源电子标签。电子标签由耦合元件和ASIC ( IC)组成。无源电子标签, 即没有自己的电源供给的电子标签,由读写器发出的高频场提供能量。模拟前端配合解调器从电子标签天线吸收电流, 整流后使电容充电, 再经稳压后为电子标签供电。

2 CAN总线技术
    CAN是由ISO定义的串行通讯总线, 最初应用在80年代末的汽车工业里。它具有高位速率、高抗电磁干扰性、高可靠性而且能够检测到产生的任何错误。CAN在微控制器之间需要互相通信或微控制器和远程的外围器件要互相通信的情况下是一个理想的解决方法, 在各种控制系统得到了广泛应用。

    CAN采用了新技术及独特的设计, 与RS485相比具有突出的可靠性、实时性和灵活性。CAN具有多主节点的网络特性, 总线利用率高, 数据传输速度快, 可扩充性好,通讯距离长, 加中继器通讯距离可达数十千米, 具有可靠的错误处理和检错机制, 个别节点失效并不影响整个通讯网络的运行, 实时性好等优点。另外, CAN的双向通信弥补了RS485半双工通信的缺陷, 不仅能够实现位置信息的上传, 当需要时还可以实时修改井下某监控接点信息。比较可知, RS - 485 网络除了硬件成本、开发难度比CAN -bus网络稍具优势外其他性能方面都没有可比性。在产品更新速度特别快的今天, 如果将产品的上市时间, 产品的后期维护软件开发难度等计算在一起, RS - 485 的硬件成本优势也变得不十分明显, 因而用CAN 总线取代RS - 485 总线是一种比较彻底的方案。

3 煤矿井下人员定位系统设计

3.1 定位系统基本构成
    系统由井上与井下两部分设备组成。井上设备主要由监控中心(包括服务器)及共享网络终端等组成; 井下设备以CAN总线作为主传输途径, 开发相应的煤矿井下人员监控节点, 配合天线、电子标签、传输介质、中继器R等与监控中心挂接, 从而实现井下作业人员的定位和安全管理。系统网络结构如图1所示。

图1 定位系统网络结构图


3.2 定位系统工作原理
    定位系统主要实现井下人员及设备安全监测工作。在坑道、作业面的交叉道口安装监控节点, 入井工作人员按照要求佩戴安装电子标签的腰带, 或佩戴装有电子标签的安全帽。RF ID读写器通过固定频率的射频载波向电子标签传送信号, 电子标签(工作人员随身佩戴)进入读写器的天线工作区域后被激活, 并将载有个人信息的射频信号经卡内收发模块发射出去; 读写器天线接收到电子标签发来的射频信号, 经过处理后, 提取出个人信息, 通过现场总线送至井上监控中心, 记录井下工作人员经过地点、时间、活动轨迹等实时信息, 还可自动生成考勤作业的统计与管理等方面的报表资料, 提高管理效益。 [page]

3.3 定位系统核心部件—RF ID监控节点
    1) RF ID监控节点硬件设计。监控节点由读写器、微控制器(MCU) 、CAN节点组成。设计中读写器使用的射频芯片是R I - STU - 650A, 它具有抗干扰能力强、通信速率高、功耗低、性能稳定等优点。考虑到成本等方面的问题,设计时RF ID采用的工作频率为915MHz, 经过试验测试,证明在传输距离及数据可靠性等方面, 可以达到本系统的功能要求。读写器与微控制器89C51间利用SP I串行接口进行通信。CAN 节点由三部分所构成: 独立CAN 控制器SJA1000、CAN 驱动器82C250 和高速光电耦合器6N137,如图2所示。为了增强CAN 节点的抗干扰能力, SJA1000并不是直接与82C250相连, 而是通过高速光耦6N137 与82C250相连, 这样就很好的实现了总线上各CAN节点间的电气隔离。

图2 监控节点内部功能模块图


    2) RFID监控节点软件设计。监控节点单片机软件设计是使用C51和汇编语言混合编程, 包括复位模块、防冲突模块、读写模块、通信模块, 其流程图见图3。当Tag被验证为合法时, 读写器才正式读/写Tag数据, 经过信息处理之后, 由CAN总线上传到地面监控心。当Tag被验证为非法时, 读写器转到直接复位应答状态, 等待下次读写操作开始。

3.4 系统实现的主要功能
    1) 考勤管理功能。通过操作平台专用管理软件对下井人员进行下井次数、井下停留时间等信息分类统计, 便于考核, 实现工作人员的考勤统计管理功能和有关报表的打印。
    2) 安全保障功能。系统根据数据库中储存下来的历史数据信息, 可迅速知道井下人员及重要设备的分布情况, 一旦出现矿井灾难, 可对现场被困人员进行定位和搜寻,便于有效救护。

图3 RFID监控节点软件流程图


    3) 生产调度功能。通过调用数据库中的数据, 可以查询井下人员分布情况并根据需要迅速进行人员调配, 实现井下有限资源的优化配置, 达到事半功倍的效果。

4 结语
    煤矿安全是煤矿生产永恒的主题, 人员监控与定位是实现煤矿安全生产的重要保证之一。为此本文对煤矿人员考勤管理系统进行了调研与分析, 对当前的定位技术进行了研究, 提出了一种以RF ID为核心, 以CAN - bus通信网络为纽带的煤矿井下人员定位系统。经过试验验证, 达到了预期的目的, 该系统极大地满足了实时掌握煤矿入井人员的动态分布及安全管理的需要, 可实现考勤管理功能及快速指导矿井突发性事故的救护工作。

关键字:RFID  CAN  人员定位系统 引用地址:基于RFID与CAN的煤矿井下人员定位系统研究

上一篇:使现场总线在本质安全区域内发挥作用
下一篇:工业以太网PROFINET革新制丝线的电控系统

推荐阅读最新更新时间:2024-05-02 22:15

基于CAN总线的并联逆变电源通信监控系统研究
  逆变电源的模块化并联运行可大大提高系统的灵活性,打破逆变电源在功率等级上的限制,用户可根据需要组合系统的功率,同时便于实现冗余设计,因而具有高可靠性和易于大功率化的优点。并联逆变电源通信监控技术的研究是交流电源系统从传统的集中式供电向分布式供电乃至智能电源系统供电模式发展过程中必须解决的一个课题 。本文介绍一种基于CAN现场总线的并联逆变电源通信监控系统。系统充分利用TI公司TMS320LF2407A DSP芯片的内部资源,通过CAN总线从各并联模块获取并解析现场控制数据,响应现场强实时性操作,实现对模块工作的调度监控,具有结构简洁、扩容方便及可靠性高的优点。   1 系统组成   1.1 系统网络结构   系统组成如图
[嵌入式]
汽车测量仪器的最新解決方案
随着汽车向舒适、安全、信息和环保方向的发展,汽车引擎开发成为了汽车行业发展的主流。本文介绍应对汽车电子控制装置(ECU)开发的最新汽车电子测试解决方案。 CAN是通过发动机和变速器等多数电子控制装置(ECU)相互传送信息以达到综合控制车辆的车载网络。横河电机生产的数字示波器有CAN分析功能,能够对读入深储存器的CAN波形数据进行时序分析,把ID、Data的分析结果及ACK的有无和波形数据一起显示出来,能够对ID指定、数据指定、错误指定、帧开始作为组合触发条件收集数据,能够高速检索部帧数据,包括指定的ID、Data、CRC、ACK的帧和错误帧,以及把帧数据里混入的Bit Stuff(位填充功能)检索出来,进行波形显示。 使用上述功
[测试测量]
PIC18单片机的CANopen通信协议
引 言 CAN总线由于具有实时性和可靠性高、组网成本低等优点,近年来在汽车工业、楼宇自动化、工厂自动化、机器人控制等领域得到广泛应用。CANopen协议不仅定义了通信规范,而且为可编程系统、不同器件、接口等设备应用子协议定义了大量的行规。遵循CANopen协议开发出的设备能实现不同生产厂家的产品间的互操作。 要掌握CANopen协议,重点是对对象字典和设备模型的理解以及对4类通信对象的掌握。本文先对CANopen协议进行削析,再重点介绍在PICl8F458单片机上开发基于CANopen协议的节点,最后通过温度测控系统实验验证了系统信息传递的可靠性、准确性和实时性。 1 CANopen通信协议简介 CANopen协议是
[单片机]
PIC18单片机的<font color='red'>CAN</font>open通信协议
Canalys:第三季度 iPad 仍是领衔全球平板市场
根据市场研究公司 Canalys 的数据,苹果在 2020 年第三季度继续维持全球平板电脑市场的主导地位,由于疫情的持续影响,iPad 的出货量估计同比增长了 47 %。 预估数据显示,苹果在第三季度售出了 1520 万台 iPad,高于去年同期的 1040 万台,占据了全球市场 34.4% 的市场份额。 至于安卓阵营方面,三星在第三季度实现了大幅增长,销售了约了 900 万台 Galaxy 平板电脑,占据了 20.4 %的市场份额,同比增长 79.8 %;华为以 510 万台平板电脑的销售量位居全球第三,其市场份额为 11.5 %;亚马逊和联想分别排在第四和第五,出货量分别为 500 万和 420 万,亚马逊占据了
[手机便携]
简论RFID技术在汽车总装线上的应用情况
  引言   RFID(Radio Frequency Identification)是一种非接触式的自动识别技术,它利用射频信号通过空间耦合,实现无接触信息传递并通过所传递的信息达到识别的目的,识别工作无须人工干预,具有很多优点,诸如数据存储量大、可读写、非接触、识别距离远、识别速度快、保密性好、穿透性强、寿命长、环境适应性好以及能同时识别多标签等等,并且可工作于各种恶劣环境。   车间的制造能力和其内部物流能力对企业的生产能力起到了决定性的作用,制造执行系统(Manufacturing Execution System,MES)作为承接ERP(Enterprise Resource System,企业资源计划) 系统、
[嵌入式]
基于现场总线技术的信号传输方案的研究
引言 现阶段用于实现系统中各相关组件信号传输方式的设计大多为简单的点对点导线式传输方式,这种传输方式在信号数量较少的情况下可谓是一种简单可行的方式,但针对信号数量很多而且空间有限的情况,这种设计方式便显得有些笨拙,例如由于信号数量很多导致插接件、导线数量增多,不仅给某导弹引信控制系统的结构设计带来很多压力,也会因为大量插接件的使用降低系统信号传输的可靠性,同时还因为大量导线的存在而降低系统的环境适应性和电磁兼容性等。 随着某导弹引信控制系统设计技术的发展,其功能要求更加复杂,而其结构小型化和可靠性、安全性等性能指标等要求不断提高,传统的点对点导线式的信号传输方式越来越无法满足该系统的发展要求,随着传统的信号传输设计弊端的凸显和数
[应用]
RFID在Rifidi中的仿真研究
射频识别(Radio Frequency Identification,RFID)技术,作为快速、实时、准确采集与处理信息的高新技术和信息标准化的基础,已经被公认为本世纪十大重要技术之一。 本课题主要讲述射频识别(RFID)在仿真软件Rifidi中的仿真应用。RFID是一种新型的自动识别技术,具有很多优点。但由于在射频识别 (RFID)读写器和天线的安装过程中,实施人员有时要绞尽脑汁地满足速率要求和反复调试各种方案才能达到最好的读取效果。另外,即便实施人员已经设计了一种安装方案并调试成功,但是该方案在实际应用中究竟有多大的作用依然是个未知数,一旦不能满足实际应用的需要,调整方案所带来的“回滚”不仅会耗费大量的人力、物力,更有可
[网络通信]
亚洲RFID热潮持续 多数产业仍处观望阶段
  GS1 Taiwan日前举办了“2008 RFID/EPC技术应用亚洲论坛”,指出目前RFID/EPC在亚洲方面的发展情况,预计2008年日本RFID产值将超过200亿台币,韩国也预计2008年RFID产值可达180亿台币;台湾2008年整体产值约20亿,仍然偏低,多数产业处于观望阶段。   “2008 RFID/EPC技术应用亚洲论坛”由GS1 Taiwan主办,今年总共吸引了800人参与。GS1 Taiwan指出,目前台湾会员数目居亚洲第五名,全球第七,亚洲前四名依序为日本、韩国、香港、澳大利亚。   过去三年来,GS1 Taiwan协助制订30项RFID标准,此次会议发表的是有关ISO国际标准、产业创新应用、动物饲养
[焦点新闻]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved