四旋翼无人机建模及其PID控制律设计

发布者:水云间梦最新更新时间:2012-11-03 来源: 现代电子技术 关键字:四旋翼  PID  重心偏移  控制逻辑 手机看文章 扫描二维码
随时随地手机看文章
    四旋翼无人机是一种具有4个旋翼的飞行器,有X型分布和十字型分布2种。文中采用的是X型分布的四旋翼,四旋翼无人机只能通过改变旋翼的转速来实现各种运动。国外对四旋翼无人直升机的研究非常活跃。加拿大雷克海德大学的Tavebi和McGilvrav证明了使用四旋翼设计可以实现稳定的飞行。澳大利亚卧龙岗大学的McKerrow对Dragantlyer进行了精确的建模。目前国外四旋翼无人直升机的研究工作主要集中在以下3个方面:基于惯导的自主飞行、基于视觉的自主飞行和自主飞行器系统。而国内对四旋翼的研究主要有:西北工业大学、国防科技大学、南京航天航空大学、中国空空导弹研究院第27所、吉林大学、北京科技大学和哈工大等。大多数的研究方式是理论分析和计算机仿真,提出了很多控制算法。例如,针对无人机模型的不确定性和非线性设计的DI/QFT(动态逆/定量反馈理论)控制器,国防科技大学提出的自抗扰控制器可以对小型四旋翼直升机实现姿态增稳控制,还有一些经典的方法比如PID控制等,但是都不能很好地控制四旋翼速度较大的情况。本文对四旋翼无人机设计了另外一种不同的控制方法即四旋翼的四元数控制律设计,仿真结果表明这种控制方法是一种有效的方法。尤其是对飞机的飞行速度较大的情况,其能稳定地控制四旋翼达到预期的效果。

1 四旋翼的模型
   
文中所研究的四旋翼结构属于X型分布,即螺旋桨M1和M4与M2和M3关于X轴对称,螺旋桨M1和M2与M3和M4关于Y轴对称,如图1所示。对于四旋翼的模型本文主要根据四旋翼的物理机理进行物理建模,并做以下2条假设。


    1)四旋翼无人机是绝对的刚体,不考虑其结构和弹性形变,而且机体的重心位置不变,其质量为常数;
    2)假设地面为惯性参考系,即假设地面坐标系为惯性坐标系。
    利用电子秤测出各个零部件的质量,利用游标卡尺和直尺测出各个零部件的尺寸,应用悬吊法测出其机体的重心。立机体坐标系并求出四旋翼的转动惯量,对于不规则的物体进行必要的简化和等效,对于螺旋桨的建模忽略了其所受的空气阻力和侧向力矩,只考虑螺旋桨的升力和扭矩。
1.1 四旋翼动力学方程
   
在机体坐标系下的受力与力矩关系式:
    [page]

1.2 四旋翼无人机动力系统建模
1.2.1 电机动力学模型
   
    其中,JTM为电机的转动惯量,QL为负载扭矩,Q是电机扭矩.V是电机两端电压,I是电机通过的电流,ω是电机转动角速率,Kq,Ra和Ke是电机的特定常数,Kq将电流和扭矩关联,Ra是电机转子的总阻抗,Ke将电机转速关联到电动势。
1.2.2 螺旋桨的模型
   
文中只考虑螺旋桨沿构造旋转轴的升力T和扭矩Q,忽略其受到的阻力和侧向力矩。这些力或力矩均与旋翼转速的平方(Ω2)成一定比例关系
   
    其中,CT,CQ分别为旋翼的拉力系数、阻力系数、扭矩系数和侧倾力矩系数,ρ为空气密度,R为桨叶半径,A=πR2浆盘面积。

2 四旋翼无人机PID控制律设计
2.1 四旋翼无人机PID控制结构
   
文中的主要目的是基于PID的四旋翼控制问题研究,其最终目标是要验证PID能有效的控制四旋翼在没有重心偏移和有重心偏移下情况下的姿态角和速度。故而首先要对所用的四旋翼飞机进行建模,然后进行控制器的设计,最后进行仿真验证。


2.2 四旋翼无人机PID控制参数和PID控制器结构图

[page]

3 实验结果与分析
3.1 在没有重心偏移情况下的控制结果
   

在没有重心偏移情况下俯仰角和滚转一起控制5度的结果表明pid能有效的控制控制量在很快的时间内达到预期的效果。


    在姿态角控制基础上近一步加入速度控制,而且速度控制只是简单的比例控制,实验结果很好。
3.2 重心偏移条件下的控制结果
   
为了检验PID控制效果,文中对四旋翼的重心进行了偏移,控制结果表明控制量的快速性变差,但是控制依然平滑有效。

[page]



4 控制逻辑
   
为了方便人能更加简单的控制四旋翼,文中加入了控制逻辑。操作者面北朝南,飞机机头可以在你前方的任意一个方向,操作者只要按自己的方位进行前后左右控制。
    公式推导:Vxcmd和Vycmd是操作者控制输入。
    首先将速度分解到飞机所在的地轴系下:
   
    最后将速度送入控制器进行控制。

5 结论
    PID控制器能有效的控制四旋翼无人机的姿态角和速度,而且当四旋翼的重心发生偏移时,虽然控制的快速性有所下降,但控制效果依然满足要求。

关键字:四旋翼  PID  重心偏移  控制逻辑 引用地址:四旋翼无人机建模及其PID控制律设计

上一篇:基于LonWorks水厂前端智能节点的配置与实现
下一篇:四旋翼无人机建模及其PID控制律设计

推荐阅读最新更新时间:2024-05-02 22:24

位置式PID控制算法模型(数字)
float T, Kp, Ti, Td; //const float A, B, C; void calcConst() { A = Kp * (1 + T / Ti + Td / T); B = -Kp * (1 + 2 * Td / T); C = Kp * Td / T; } float PID(float rt, float yt) { static float e1 = 0.0f, e0 = 0.0f, uk_pre; float e2, deltaUk; e2 = rt - yt; deltaUk = A * e2 + B * e1 + C * e0; e0 = e1;
[单片机]
开放式数控系统PLC逻辑控制
  进入20世纪90年代,开方式、全功能、高效化成为翻控技术的主要发展趋势口人们比以往更加注重数控系统的灵活应用树和可扩展性,注重不同生产厂家户品间的互换性。在该类数控系统中常将 PLC 逻辑控制单元与CNC拭制装置集成为一体,通过内部信。通道相互交换控制要求,从而充分发挥各自的控制作用,进一步提高整个 控制系统 豹协调性和白动化程度。因此在开放数控系统中,PLC逻辑控制单元所起的作用更加突出,其功能日益完备,而其构成手段则日益简洁, 数控机床 在加工过程中所需的各种操作,比如卞抽变速、松夹上件、开车停车、月具选择冷却液供给、越程报警、程序段跳跃和进给速度调整等,都是通过PLC逻辑控制系统来实现的。   本文以英特马达开放式数控系
[嵌入式]
采用可编程逻辑器件EPM7032实现自动交通控制系统
随着微电子技术的迅猛发展,可编程逻辑器件从20世纪70年代发展至今,其结构、工艺、集成度、功能、速度、性能等方面都在不断的改进和提高;另外,电子设计自动化EDA技术的发展又为可编程逻辑器件的广泛应用提供了有力的工具。目前,在数字系统设计中,已经可以借助EDA工具通过软件编程对可编程逻辑器件的硬件结构和工作方式进行重构,从而使得硬件设计兼有软件设计的灵活性和便捷性。本文介绍一种用Altera公司的可编程逻辑器件EPM7032,在MAX+PlusⅡ开发环境下采用VHDL语言以及ByteBlaster在线可编程技术来实现自动交通控制系统的方法。该设计中采用的自顶向下的设计方法同样适用于复杂数字系统的设计。   1 EPM7032器件的结
[工业控制]
形象解释PID算法+PID算法源代码
小明接到这样一个任务: 有一个水缸点漏水(而且漏水的速度还不一定固定不变), 要求水面高度维持在某个位置, 一旦发现水面高度低于要求位置,就要往水缸里加水。 小明接到任务后就一直守在水缸旁边, 时间长就觉得无聊,就跑到房里看小说了, 每30分钟来检查一次水面高度。水漏得太快, 每次小明来检查时,水都快漏完了,离要求的高度相差很远 ,小明改为每3分钟来检查一次,结果每次来水都没怎么漏 ,不需要加水,来得太频繁做的是无用功。几次试验后, 确定每10分钟来检查一次。这个检查时间就称为采样周期。 开始小明用瓢加水,水龙头离水缸有十几米的距离, 经常要跑好几趟才加够水,于是小明又改为用桶加, 一加就是一桶,跑的次数少了,加水的速度也快了,
[单片机]
数字显示调节仪PID参数自整定参考分析
各种智能型数字显示调节仪,一般都具有PID参数自整定功能。仪表在初次使用时,可通过自整定确定系统的最佳P、I、D调节参数,实现理想的调节控制。在自整定启动前,因为系统在不同设定值下整定的参数值不完全相同,应先将仪表的设定值设置在要控制的数值(如果水电站或是中间值)上。在启动自整定后,仪表强制系统产生扰动,经过2~3个振荡周期后结束自整定状态。仪表通过检测系统从超调恢复到稳态(测量值与设定值一致)的过度特性,分析振荡的周期、幅度及波形来计算仪表的最佳调节参数。理想的调节效果是,设定值应与测量值保持一致,可从动态(设定值变化或扰动)合稳态(设定值固定)两个方面来评价系统调节品质,通过PID参数自整定,能够满足大多数的系统。不同的系
[测试测量]
S7-300的PID控制调节一
1.什么是PID控制? PID控制器是一个在工业控制应用中常见的反馈回路部件,由比例单元P、积分单元I和微分单元D组成。 PID控制可加快大惯性系统响应速度以及减弱超调趋势。PID控制器就是根据系统的误差,利用比例、微分和积分算出控制量进行控制。 PID控制流程图: 开环控制典型的例子就是步进电机;闭环控制常用的例子就是伺服电机,伺服电机带有编码器,也就是它的反馈装置。 2.温度PID调节案例 ①硬件配置 S7-300CPU模块、模拟量输入模块AI8×13BIT(支持PT100测温)、模拟量输出模块AO8×12BIT、变频器、灯泡、热电阻PT100。 ②硬件组态 AI模块选择7通道,RTD类型,PT100气候型: AO
[嵌入式]
S7-300的<font color='red'>PID</font><font color='red'>控制</font>调节一
模糊PID控制器在伺服系统中的应用
0 引言   传统PID(比例、积分和微分)控制原理简单,使用方便,适应性强,可以广泛应用于各种工业过程控制领域。但是PID控制器也存在参数调节需要一定过程,最优参数选取比较麻烦的缺点,对一些系统参数会变化的过程,PID控制就无法有效地对系统进行在线控制。不能满足在系统参数发生变化时PID参数随之发生相应改变的要求,严重的影响了控制效果。本文介绍了基于车载伺服系统的模糊PID控制,它不需要被控对象的数学模型,能够在线实时修正参数,使控制器适应被控对象参数的任何变化。并对其进行仿真验证,结果表明模糊PID控制使系统的性能得到了明显的改善。 1 传统PID与模糊PID的比较   1.1 PID控制   PID控制器问世至今凭
[嵌入式]
三相PWM逆变电源控制系统PID参数设计
PID控制是最早发展起来的控制策略之一,具有算法简单、易于实现、鲁棒性好且可靠性高等优点,是一种最通用的控制方法,在各种电源控制系统中得到了很好的应用。对于PID参数的确定,一般有经验的技术人员会根据以往的调试经验,直接设置控制系统的PID参数,最终通过不断调试来满足要求。没有经验的多数人选择用仿真的方法预先试出一个较为合适的PID参数,然后在此基础上不断调试。这两种方法都缺少一定的理论依据,工作量比较大,并且在系统参数变化的情况下,所选的PID参数对系统性能的影响无从得知。     虽然复杂的、非线性系统的数学模型难以确定,但是在前人所做工作的基础上,经过一定的分析和简化,最终可表示成传递函数的形式。本文将PID控制应用于PWM
[电源管理]
三相PWM逆变电源<font color='red'>控制</font>系统<font color='red'>PID</font>参数设计
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved