在数控机床行业中,数控系统是指计算机数字控制装置、可编程序控制器、进给驱动与主轴驱动装置等相关设备的总称。有时是指其中的计算机数字控制装置,并将该控制装置称为数控装置。数控系统的组成及各部分的作用,如图1所示。
从图1 Position-Mate-A轴切换控制原理框图中可看出本单轴CMC操作系统主要适用于刀库,这需要连续且更为精确定位的CMC系统,该加工中心由以下结构组成:单轴定位控制器、两个伺服电动机、1个伺服单元。这些设备主要用于对刀库转台的控制。该机床具有一种优势,就是转台和刀库无需同时动作,这就避免了由于摩擦等原因产生的设备磨损,从而达到降低成本的目的。[page]
对程序指令的发放和处理具体步骤为:(1)CNC控制器负责对PMC发放指令。(2)PMC根据对CNC发放指令的运算处理并发出控制指令和移动指令。转台运行指令和轴切换指令的作用是使控制器的运行方式发生转变。即由刀库运行转变为转台运行。具体流程为:(1)伺服处于断开状态;(2)切换伺服电动机动力线;(3)地位控制器由刀库方式变为转台方式;(4)接通伺服;(5)到达指定位置。
值得注意的是,上述步骤运行完成后切换到刀库的运行方式,其中需要急停信号切换到控制器急停接口。
在机床的运行过程中通常会出现较多意外情况,操作者要凭经验对其进行分析,当出现刀库剧烈抖动时,如果处理不当刀库中各部件损坏程度将加深。这种现象的出现是由于在急停释放时,控制器处于复位状态,此时轴的运行方式发生转变,但实际上该指令并未执行,因此会出现非正常的轴切换动作。针对上述问题的分析和研究后发现,使用常用的方法去解决这一问题并未得到较好的效果。经过实践研究发现采用以下的方法解决该问题,将起到满意的效果。即在转换过程中使输出处于断开状态,这就不会使刀库出现剧烈抖动现象,根据以上分析对PMC急停回路进行了改进,如图2所示。
具体分析如下;在转台旋转的过程中,按下急停按钮后。ESP信号与EMGB接通,随后进行自行解锁,如果不切除总电源该信号将不发生任何变化。因此,虽然CNC已回到初始状态,但EMGB信号始终为“1”,用于切换转台和刀库的输出信号却始终为“0”,这会使两个切换接触器同时断电,并且定位控制器和伺服单元处于报警状态,此时会对CNC发出报警信号和信息提示。如果要解除报警,则必须切断电源重新启动机床,利用上述方法可从根本上排除该故障。
1 ATC装/卸刀手状态指示器调试分析
某加工中心使用分离式结构刀库机械手,用液压油缸的方法来完成机械手换刀的环节。机械手在主轴侧顺时针转动180°完成换刀动作。感应块触发LS+180°进而接近开关来得到位检测。在下一换刀工序中,机械手反转180°实现换刀,感应块触发LS+180°进而接近开关来得到位检测。从上述换刀步骤分析可得出结论,机械手需正/反转75°动作就可达到换刀目的。也就是在每次换刀过程中,手架只需正转或反转180°。
对于确定机械手正传或反转180°较困难。因为每次机械手换刀的起始位置总是处于-75°,而相应的感应块位置并不在接近开关的位置,因此无法确定机械手所处的具体位置。如果能在PLC辨别出机械手的位置和状态,则可简单的控制±180°回转方向。
如图3所示,文中针对在日本FANUC Oi系统PLC程序基础上进行了改进,以适应实际工作需要。循环技术是该程序的重要组成部分,其工作原理类似于逻辑电路中的触发器。其运行原理如下:PLC中的S信号代表着计数状态,当S信号为“0”和“1”时分别代表携手抓和装刀爪,图3代表装刀手的运行状态变化趋势S。S状态的变化与机械手旋转次数有关,每旋转一周变化一次。此系统运行时为断电保护,因此当出现断电或停机现象时不会发生数据丢失。
由图3可知,在两次换刀过程中,当M信号传输到机械回路中,第一次机输出+180°,第二次输出-180°。因此机械手第一次正转180°,第二次反转180°,然后分别进入动作ATC6。当进行机械手的拆卸工作时,要依据机械手的位置设置与相对应的0或1数据,设置过程在计数器中完成。
[page]
2 旋转轴位置检测调试方法
通过技术引进而生产的加工中心刀库可取代绝对位置编码器。该技术原理如图4所示。在控制系统PLC输入接口中会得到两位BCD码DL1~DL8、DH1~DH4和同步信号DB。对于每个刀位PG都会给出与刀位号相同的BCD码,PLC根据起动刀链的驱动装置,得到与编码器输出相符的刀位,最终实现精确定位。
考虑到费用和工作效率等问题,文中设计了一套既经济又适用的位置识别方法。如图5所示,在刀链的主动轮上制作一个感应盘,该感应盘分为4个感应区间。对于刀位旋转的计数和定位监测,又另外安装了2个无触点开关,分别为LS1和LS2。定位控制:在PLC移动指令完成时,将刀链速度在正常运行速度的基础上调慢。当LS1、LS2同时接通时停止机器的旋转,然后进行精确定位。其程序如图6所示。
PLC中含有加/减循环计数装置,该程序计数装置的范围是1~60,断电保持型循环计数器的地址为D515,其中D517内寄存的数据格式为现行计数值类型。由刀链刀号顺序确定的刀库在正转(MGCCW)时的计数由CCWP触发,CMP触发刀库反转计数信号。当刀位旋转一次,计数器进行加减计数,防止在计数的过程中出错。例如:机床在正常工作过程中出现断电或停车。如果重新启动,计数将发生错误。针对该问题,文中设计了一个特殊装置CANP。该装置确保了刀链运动至LS1和LS2时,均未感应位置起动直到停止期间才允许计数。为随后换刀程序的顺利进行,在刀库运行期间将D517内部数据保存到D560内。该机床无需担心机床突然停机而造成的数据丢失,因为该机床具有断电保护功能。
机床的调试与使用要根据实际工作情况而定,不能按照统一的模板解决所有问题,文中仅针对之前所遇到的问题做出了分析。在实际工作中采用以上方法使机床运行稳定,且方便调试。同时还提高了工作效率。因此,该方法具有较好的发展与应用前景。
关键字:FANUC PMC 数控机床 调试方法
引用地址:
FANUC系统数控机床调试方法的改进与应用
推荐阅读最新更新时间:2024-05-02 22:38
数控机床中的伺服系统分析
一、概述
伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。
作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。
二、伺服系统的结构及分类
从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈
[工业控制]
FANUC机器人TCP三点法介绍
三点法设置方法
DETL–METHOD–回车进入三点法界面:
三点法操作步骤:
记录接近点1
a.移动光标到接近点1(Approhpoint1);
b.把示教坐标切换成全局坐标(WLD)后移动,使工具尖端接触到基准点;
c.按【SHIFT】+F5【RECORD】(位置记录)记录
记录接近点2
a.移动光标到接近点2(Approachpoint2);
b.把示教坐标切换成关节坐标(JOINT),旋转J6轴(法兰面)至少90度,不要超过360度;
c.把示教坐标切换成全局坐标(WORLD)后移动机器人,使
[机器人]
基于LabVIEW的数控机床网络测控系统--网络通信关键技术研究 1
4数控机床远程测控系统的网络通信关键技术研究 基于Internet组建数控机床网络测控系统目前主要有两种基本的模式:C/S和B/S模式。两种通信模式各有自己的优缺点,本章将对两种结构进行详细的比较。同时在LabVIEW环境下实现网络通信的也有多种方式,在本章中会做一一比较。数据的存储与访问也是实现远程测控系统的关键,在本章最后会进行Web数据库的设计和LabVIEW平台下实现远程数据库的访问技术方面的分析与研究。 4.1 B/S结构与C/S结构的比较 本文提出的基于Internet组建网络化测控系统目前主要有两种基本的模式:C/S和B/S模式,性能和功能场合上各有自己的优缺点,现做如下分析对比。 (1)C/S模式:(客户/服务
[测试测量]
数控机床中传感器的应用
传感器简介 传感器是一种能够感受规定的被测量,并按照一定的规律转换成可用输出信号的器件或装置,其输入信号(被测量)往往是非电量,输出信号常常为易于处理的电量,如电压等。 传感器种类很多,分类标准不一样,叫法也不一样,常见的有电阻传感器、电感式传感器、电容式传感器、温度传感器、压电式传感器、霍尔传感器、热电偶传感器、光电传感器、数字式位置传感器等。在数控机床上应用的传感器主要有光电编码器、直线光栅、接近开关、温度传感器、霍尔传感器、电流传感器、电压传感器、压力传感器、液位传感器、旋转变压器、感应同步器、速度传感器等,主要用来检测位置、直线位移和角位移、速度、压力、温度等。 数控机床对传感器的要求: (1)可靠性高和抗干扰性强; (2)
[嵌入式]
伺服电机的调试方法和注意事项
伺服电机(servo motor )是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。 伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。 伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。 今天与大家分享的就是伺服电机的调试方法和注意事项。 ①伺服电机的调试方法 ②伺服电机的注意事项 1、伺服电机油和水的保护 A:伺服电机可以用在会受水或油滴侵袭的场所,但是它不是全防水或防油的。因此, 伺服电机不应当放置或使用在水中或
[嵌入式]
FANUC工业机器人如何实现智能化机床上下料
桥箱类零件生产具有精度高、加工工序多、形状复杂及重量重的特点,为提高加工精度及生产效率,各重型汽车生产厂纷纷采用数控加工中心来加工此类零部件。使用数控加工中心加工工件时,要求工件在工作台上具有非常高的定位精度,且需要保证每次上料的一致性。由于人工上料这类的工件具有劳动强度高、上料精度不好控制等缺点,现在正逐步被工业机器人或专机进行上下料所取代。工业机器人的应用具有重复定位精度高。可靠性高、生产柔性化及自动化程度高等无可比拟的优势。 桥箱类零件生产具有精度高、加工工序多、形状复杂及重量重的特点,为提高加工精度及生产效率,各重型汽车生产厂纷纷采用数控加工中心来加工此类零部件。使用数控加工中心加工工件时,要求工件在工作台上具有非常高的定
[嵌入式]
国产数控机床与军工领域合作机制寻求新突破
日前,2017年军工行业国产数控机床应用座谈会暨国防科技工业智能制造论坛在北京举行。下面就随工业控制小编一起来了解一下相关内容吧。 本次会议由中国机床工具工业协会与中国和平利用军工技术协会承办。中国机床工具工业协会副秘书长郭长城介绍了中国机床工具行业发展方向以及第二批军工领域国产高档数控机床供应目录审核情况;发改委、工信部、国防科工局领导分别对高档机床国产化及长效合作机制作出重要指示。会上还发布了第一批军工领域国产高档数控机床供应目录,并颁发证书表彰优秀企业。 本次年会上,主办方还举办了首届国防科技工业智能制造论坛。论坛分三个,一是从政策及顶层设计层面进行解读,工信部赛迪研究院装备工业研究所所长左世全解读智能制造规划及进展;国防
[工业控制]
FANUC机器人与SIEMENS PLC的PROFIBUS-DP通讯技术分析
本文主要以FANUC为中心,介绍FANUC机器人与SIEMENS 的PROFIBUS-DP通讯以及FANUC机器人与FRONIUS焊机的DEVICE NET通讯。
一、FANUC机器人与SIEMENS PLC的PROFIBUS-DP通讯
1.准备
本文采用的PLC为S7-300 317-2PN/DP,FANUC机器人型号为,以PLC为主站,FANUC机器人为从站,通过DP线连接。FANUC机器人的PROFIBUS-DP通讯板卡处连接如下图所示。
2.软件设置
(1)PLC组态
组态主站系统后,在DP网上挂上FANUC机器人并组态通讯区。
a)站号分配
[机器人]