Vienna整流器单周控制技术研究

发布者:未来感觉最新更新时间:2013-05-06 来源: 电子科技 关键字:Vienna整流  单周控制  RS触发器  功率因数 手机看文章 扫描二维码
随时随地手机看文章
    二极管整流器在电力电子行业中得到了广泛应用,但由于其存在功率因数低并向电网注入了较高的电流谐波等因素,对电网污染严重,难以满足(GB/T14549—93、IEC61000—3—2)等相关标准的要求。随着对用电设备谐波污染问题的日益重视,以及三相大功率装置在电网中的应用越来越广泛,三相大功率因数校正技术已经成为国际国内电力电子及研究领域的热点问题。
    Vienna整流器是由Kolar教授于1994年提出的一个优秀的三电平PWM整流器拓扑,其具有所需的开关器件少,单个功率器件所承受的最大电压为输出电压的一半,无需设置驱动死区时间,无输出电压桥臂直通问题等特点。因而引起国内外学者对其拓扑结构及控制策略和方法的广泛关注。文中通过分析Vienna整流器的基本工作原理,并针对三相大功率PFC的特点,以及直流母线中点电位平衡的控制、解决了三电平中点平衡问题的需要。设计了单周控制技术整流器控制结构,并通过采用电压外环和电流内环的双闭环控制,进一步提高了动态和稳态性能。最后搭建仿真模型,对单周控制的Vienna整流器进行了仿真研究与分析。

1 WIENNA整流器工作原理
   
Vienna整流器结构如图1所示,其中交流侧的Li为等值平波电感,C1、C2为输出滤波电容,为高次谐波电流提供低阻抗通路,减少直流电压纹波。三相中每相都由全控开关管(Sa,Sb和Sc)和4个二级管组成双向开关管。通过控制3个双向开关管完成输入电流和母线电压的调节、以及母线侧两个电容的电压平衡。


    其运行原理如下:以桥臂1为例,当开关Sa开通时,整流器的输入端电压被钳位于直流母线中点;当开关Sa关断时,整流器的输入端电压为+Vdc/2或-Vdc/2,电压极性由a相电流的极性决定。因此,桥臂1有3个开关状态“1”“0”“-1”,整流器的输入端被分别钳位于直流母线的正极、中点和负极。其电路方程为
    [page]

    式中,E为输入电压E=[ua ub uc]T;I为电感电流向量I=[ia ib ic]T;UMD为电容中点到电网电性点电压向量;UXM为整流桥臂电压向量;UXM=[uAM uBM uCM]T;L为输入升压电感
   

2 WIENNA整流器单周控制技术的实现
   
单周控制法作为一种非线性控制法,最早由美国学者Keyue M.Smedley利Slobodan Cuk提出。其基本思想是在每个开关周期内控制开关管的占空比d,使开关变量的稳态平均值或瞬态平均值等于参考量或与参考量成比例,从而消除稳态和瞬态误差。单周控制开关频率恒定,电路结构简单,响应速度快。
    Vienna整流器的单周期核心控制函数如式(4)所示,其中电流的绝对值可以通过使用3个全波整流电路来实现。控制规则就是Vm与各相占空比的表达式的乘积与采样电阻上的电压的绝对值进行比较,通过比较的结果改变占空比大小,进而对主电路进行控制。
   
    Vienna整流器的单周期控制框图如图2所示,由控制框图可以看出,单周期控制的电路简单,比较容易实现。其闭环工作过程为:每个开关周期开始时,由时钟信号给3个触发器置位,各相电流采样信号通过全波整流电路接至各自比较器的输入端,3个比较器另一个输入Vm-VmdTs/(RintCint),其中取RintCint=Ts。当比较器翻转时,将其对应的触发器复位,对应的开关管关断。当三相输入呈纯阻性阻抗时,输入电流正弦化,PFC得以实现。当负载突卸时输出电压Uo上升,PI调节器输出Vm下降。

[page]

3 仿真分析
   
为证明Vienna整流器控制方法的可行性,搭建了该整流器单周控制的仿真模型。其实验参数为:输出功率Po=8 kW;相电压有效值Urms= 220V;直流母线电压Udc为+500 V和-500 V;输入滤波电感Ls=2.2 mH;直流母线电容C1=C2=1 200μF。控制原理如图3所示。


    通过仿真实验,对A相输入电压电流进行检测,其仿真结果如图5所示。传统不可控整流器输入电流受滤波电容影响,已经产生严重畸变,系统功率因数低至70%以下,结果如图4所示。


    从仿真结果中可以清晰地看出,单周控制下的Vienna整流器输入电流能良好地跟随输入电压正弦化,输入电流连续且稳定。系统谐波畸变率<3%,功率因数可达99%。

4 结束语
   
文中分析了Vienna整流器拓扑的基本工作原理和该结构的单周控制的实现方法,并采用电压外环和电流内环的双闭环控制,实现了Vien na整流器的可靠稳定,低谐波畸变率的特性。通过Matlab仿真平台,搭建了Vienna整流器的仿真模型,仿真结果表明,采用单周控制方式对Vienna整流器进行控制,具有良好的动态性能和稳态性能,控制结构简单,实现了单位功率因数运行的目标。

关键字:Vienna整流  单周控制  RS触发器  功率因数 引用地址:Vienna整流器单周控制技术研究

上一篇:基于TMS320DM642的红外监控系统设计与实现
下一篇:基于摄像头采集的混沌视频加密研究

推荐阅读最新更新时间:2024-05-02 22:38

功率因数校正电路的分析过程
根据功率因数校正设备的基本电路分析混合功率因数校正的系统理论的正确性和他的实用性.根据Buck-boost 电路和Buck 电路作为基本变换器,可以得到如下图1A、2A、3A 所示的PFC 电路,如果考虑到隔离的需要,对应有如图1B、2B、3B 所示的PFC 电路。       如果选择两个Buck-boost 电路作为基本变换器,同理可以得到3A 所示的电路。考虑到隔离的需要,有如图3B 所示的PFC 电路。       以上给出了一些基本拓扑的PFC 电路,下面将具体分析图1A 给出的电路。根据图1A,假设Buck-boost 和Buck 基本变换器都工作在CCM 状态下,本电
[电源管理]
<font color='red'>功率因数</font>校正电路的分析过程
可预置功率因数补偿装置的设计
在电力系统中,由于电网的容量是一定的,这就意味着当接入负载时,其功率即为P=U*Icosφ,由于cosφ 1,则说明电网的容量得不到充分利用。在P、U不变的情况下,提高功率因数cosφ,能降低电网输电线路的功率损耗,提高电网的供电质量,降低生产成本。因此,提高功率因数是节能的重中之重。 由电工学理论,负载的瞬时功率由以下推论: 由公式推导,瞬时功率由两个二次项组成,一项是与功率因数cosφ成正比的直流分量,另一项是与电网2ω频率相关的交流分量。 用乘法器将u、i相乘,得负载的瞬时功率。如果设计一个陷波器,去除负载瞬时功率的2ω频率的交流分量,那么,电路就只剩下与功率因数cosφ成正比的直流分量U*Icosφ。 另外,可用
[电源管理]
SVPWM控制的应用领域
SVPWM控制是一种控制三相交流电机的方法,它可以实现高效、精确的控制。由于它具有快速响应、低噪声、高精度等特点,在工业控制、船舶、风力发电、太阳能发电、新能源汽车等领域得到了广泛的应用。以下是一些应用领域: **1. ** 变频空调 : SVPWM控制可以降低功率因数,提高空气质量,节约能源。 2. 电动船和潜水 器: SVPWM控制可以通过改变电机转速来改变船或潜水器的速度和方向。 3. 风力发电系统: SVPWM控制可以将变频器输出的直流电转换为交流电,以控制发电机的转速和输出功率。 4. 太阳能发电系统: SVPWM控制可以优化光伏逆变器的输出,最大限度地提高太阳能电池板的能量利用效率。
[嵌入式]
基于单片机控制的低压无功补偿装置的设计
O 引言 在电力生产中,发电机输出的功率有两种,即有功功率和无功功率。在交流电能输送和使用过程中,用于转换成机械能、热能、光能等的部分能量叫有功功率,用于电路内电场与磁场交流的部分能量叫无功功率。在电网运行中,因大量非线性负载的运行,除了要消耗有功功率外,还要消耗一定的无功功率。负荷电流在通过线路、变压器时,将会产生电能损耗,功率因数越低电网所需无功越多,损耗就越大。随着工农业生产及家用电器的迅猛发展,我国电力系统的供电状况日益紧张,供需矛盾日益突出。动力设备普遍存在着无功消耗大、电能浪费大的问题,严重制约了各企业发展和经济效益的提高。要实现经济的快速增长,节电节能将是一项必不可少的重要举措。因此,应采取积极的措施减少无功功率
[单片机]
基于单片机<font color='red'>控制</font>的低压无功补偿装置的设计
基于MSP430的电机功率因数测量系统
MSP430系列单片机是一种超低功耗的混合信号处理器(Mixed Signal Processor),它具有低电压、超低功耗、强大的处理能力、系统工作稳定、丰富的片内外设、方便开发等优点,具有很高的性价比,在工程控制等领域有着极其广泛的应用范围。使用MSP430实现对电机功率因数等电力参数的测量,不但提高了测量的精度和自动化水平,而且降低了系统的功耗。 1 功率因数与相位 电机的功率因数cosΦ值是相电压与相电流的余弦值。设三相的电压分别为UA,UB,UC,电流分别为IA,IB,IC,则它们的表达式如下: 上式中:UM表示每相电压幅值;IM表示每相电流幅值;ω表示角频率;Φ表示相电流滞后相电压的相位差角。图1给出了三相输电线
[单片机]
基于MSP430的电机<font color='red'>功率因数</font>测量系统
功率因数功率表的用途及构造
普通功率表的标度尺是按功率因数cosφ=1来刻度的,即被测功率p=umim时,仪表指针偏转至满刻度。但当用它来测量功率因数很低的负载(如、变压器的空载运行)时,由于仪表的转矩和偏转角是与p=uicosφ成正比,因此,当cosφ很低时,仪表的转矩很小,摩擦等引起的误差以及仪表本身的功耗都会对测量结果产生很大的影响。由此可见,用普通的功率表测量低功率因数电路的功率,不仅读数困难,而且测量误差很大。因此,必须采用专门的低功率因数功率表。 低功率因数功率表是专门用来测量低功率因数电路功率的仪表。其工作原理与普通功率表基本相同,不同之处主要有以下几点: (1)为解决低功率因数下读数困难的问题,其标度尺是按较低的功率因数(cosφ=0.1
[测试测量]
一种有源功率因数校正器的设计与实现
  1 引言   在电力电子技术及电子仪器中,所需直流电是南220 V交流电网经整流得到的。交流电源经全波整流后,通常接一个大电容器,以得到波形较为平直的直流电压,但整流器一电容器滤波是一种非线性元件(二极管)和储能元件(电容)的组合。由于整流电路中二极管的非线性,虽然输入交流电压ui是正弦的,但输入交流电流ii波形却产生畸变,呈脉冲状。大量应用整流电路,要求电网供给严重畸变的非正弦电流,由此产生的谐波电流对电网产生危害,导致输入端功率因数下降。为了减小AC—DC交流电路输入端谐波电流形成的噪声及对电网产生的谐波“污染”,保证电网供电质量,提高电网可靠性;为了提高输入端功率因数,以达到节能的效果,必须限制AC—DC交流电路的
[电源管理]
一种有源<font color='red'>功率因数</font>校正器的设计与实现
用DSP控制器整合马达控制功率因数校正
    随着数字信号处理器(DSP)价格从几百美元降到3美元,DSP在价格敏感的家电(如洗衣机、冰箱、加热器、通风和空调机)中正越来越多地被采用。带特殊外设的高MIPs DSP,除显著地改进这些产品性能外,还大大地简化产品设计过程并提供各种重要的特异性能。DSP非凡的处理能力,使得制造商能满足用户不断增加的要求,如较高的效率和可变速度工作及精确的速度控制特性。     低成本DSP控制器能使很多先进的马达控制算法内置在对成本非常敏感的应用中。DSP控制器的带宽也使设计人员能用一个控制器整合多种功能,如把马达控制、功率因数校正和通信协议整合在一起(见图2)。本文描述采用低成本DSP控制器的单板AC感应马达驱动(带功
[传感技术]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved