以太网相较工业以太网有以下四大缺陷
在讲以太网的主要缺陷前,有必要先了解一下以太网的通信机制。以太网是指遵循IEEE802.3标准,可以在光缆和双绞线上传输的网络。它最早出现在1972,由XeroxPARC所创建。当前以太网采用星型和总线型结构,传输速率为10Mb/s,100Mb/s,1000Mb/s或更高。以太网产生延迟的主要原因是冲突,其原因是它利用了CSMA/CD技术。在传统的共享网络中,由于以太网中所以的站点,采用相同的物理介质相连,这就意味着2台设备同时发出信号时,就会出现信号见的互相冲突。为了解决这个问题,以太网规定,在一个站点访问介质前,必须先监听网络上有没有其他站点在同时使用该介质。,如果有则必须等待,此时就发生了冲突。为了减少冲突发生的几率,以太网常采用1-持续CSMA,非持续CSMA,P-持续CSMA的算法2。由于以太网是以办公自动化为目标设计的,并不完全符合工业环境和标准的要求,将传统的以太网用于工业领域还存在着明显的缺陷。但其成本比工业网络低,技术透明度高,特别是它遵循IEEE802.3协议为各现场总线厂商大开了方便之门,但是,要使以太网符合工艺上的要求,还必须克服以下缺陷:
(一)通信的非确定性
工业控制网络不同于普通数据网络的最大特点在于它必须满足控制作用对实时性的
要求,即信号传输要足够快和满足信号的确定性。实时控制往往要求对某些变量的数据准确定时刷新。由于以太网采用CSMA/CD方式,网络负荷较大时,网络传输的不确定性不能满足工业控制的实时要求,故传统以太网技术难以满足控制系统要求准确定时通信的实时性要求,一直被视为“非确定性”的网络。
(二)通信非实时性
在工业控制系统中,实时可定义为系统对某事件的反应时间的可测性。也就是说,在一个事件发生后,系统必须在一个可以准确预见的时间范围内做出反映。然而,工业上对数据的传递的实时性要求十分严格,往往数据的更新是在数十ms内完成的。而同样由于以太网存在的CSMA/CD机制,当发生冲突的时候,就得重发数据,最多可以尝试16次之多。很明显这种解决冲突的机制是以付出时间为代价的。而且一但出现掉线,那怕是仅仅几秒种的时间,就有可能造成整个生产的停止甚至是设备,人身安全事故。
(三)商用以太网不具备高稳定性与可靠性
传统的以太网在设计之初并不是为工业应用而设计的,没有考虑工业现场环境的恶劣的工况,严重的线间干扰以及机械、气候、尘埃等条件的恶劣,而且以太网的抗干扰(EMI)性能非常差,应用于危险场合时,不具备本质安全性能;因此对设备的工业可靠性提出了更高的要求。同时在生产环境中工业网络必须具备较好的可靠性,可恢复性,以及可维护性。即保证一个网络系统中任何组件发生故障时,不会导致应用程序,操作系统,甚至网络系统的崩溃和瘫痪。
(三)安全性问题
在工业生产过程中,很多现场不可避免地存在易燃、易爆或有毒气体等,对应用于这些工业现场的智能装置以及通信设备,都必须采取一定的防爆技术措施来保证工业现场的安全生产。在目前技术条件下,对以太网系统采用隔爆、防爆的措施比较可行,即通过对Ethernet现场设备采取增安、气密、浇封等隔爆措施,使现场设备本身的故障产生的点火能量不外泄,以保证系统运行的安全性。对于没有严格的本安要求的非危险场合,则可以不考虑复杂的防爆措施。工业系统的网络安全是工业以太网应用必须考虑的另一个安全性问题。工业以太网可以将企业传统的三层网络系统,即信息管理层、过程监控层、现场设备层,合成一体,使数据的传输速率更快、实时性更高,并可与Internet无缝集成,实现数据的共享,提高工厂的运作效率。但同时也引人了一系列的网络安全向题,工业网络可能会受到包括病毒感染、黑客的非法入侵与非法操作等网络安全威胁。
(四)总线供电问题
总线供电(或称总线馈电)是指连接到现场设备的线缆不仅传输数据信号,还能给现场设备提供工作电源。以太网从设计之初就没有考虑到这一问题,而工业现场存在着大量的总线供电需求。
正因为有以上诸多问题,普通的商用以太网是不能够直接用于工业现场的控制的。为了解决这些问题工业以太网便应运而生。
随着互联网技术的发展与普及推广,以太网传输速率的提高和以太网交换技术的
发展,传统商用以太网的上述问题在工业以太网中正在得到解决。
关键字:以太网 工业以太网 四大缺陷
引用地址:以太网相较工业以太网有以下四大缺陷
在讲以太网的主要缺陷前,有必要先了解一下以太网的通信机制。以太网是指遵循IEEE802.3标准,可以在光缆和双绞线上传输的网络。它最早出现在1972,由XeroxPARC所创建。当前以太网采用星型和总线型结构,传输速率为10Mb/s,100Mb/s,1000Mb/s或更高。以太网产生延迟的主要原因是冲突,其原因是它利用了CSMA/CD技术。在传统的共享网络中,由于以太网中所以的站点,采用相同的物理介质相连,这就意味着2台设备同时发出信号时,就会出现信号见的互相冲突。为了解决这个问题,以太网规定,在一个站点访问介质前,必须先监听网络上有没有其他站点在同时使用该介质。,如果有则必须等待,此时就发生了冲突。为了减少冲突发生的几率,以太网常采用1-持续CSMA,非持续CSMA,P-持续CSMA的算法2。由于以太网是以办公自动化为目标设计的,并不完全符合工业环境和标准的要求,将传统的以太网用于工业领域还存在着明显的缺陷。但其成本比工业网络低,技术透明度高,特别是它遵循IEEE802.3协议为各现场总线厂商大开了方便之门,但是,要使以太网符合工艺上的要求,还必须克服以下缺陷:
(一)通信的非确定性
工业控制网络不同于普通数据网络的最大特点在于它必须满足控制作用对实时性的
要求,即信号传输要足够快和满足信号的确定性。实时控制往往要求对某些变量的数据准确定时刷新。由于以太网采用CSMA/CD方式,网络负荷较大时,网络传输的不确定性不能满足工业控制的实时要求,故传统以太网技术难以满足控制系统要求准确定时通信的实时性要求,一直被视为“非确定性”的网络。
(二)通信非实时性
在工业控制系统中,实时可定义为系统对某事件的反应时间的可测性。也就是说,在一个事件发生后,系统必须在一个可以准确预见的时间范围内做出反映。然而,工业上对数据的传递的实时性要求十分严格,往往数据的更新是在数十ms内完成的。而同样由于以太网存在的CSMA/CD机制,当发生冲突的时候,就得重发数据,最多可以尝试16次之多。很明显这种解决冲突的机制是以付出时间为代价的。而且一但出现掉线,那怕是仅仅几秒种的时间,就有可能造成整个生产的停止甚至是设备,人身安全事故。
(三)商用以太网不具备高稳定性与可靠性
传统的以太网在设计之初并不是为工业应用而设计的,没有考虑工业现场环境的恶劣的工况,严重的线间干扰以及机械、气候、尘埃等条件的恶劣,而且以太网的抗干扰(EMI)性能非常差,应用于危险场合时,不具备本质安全性能;因此对设备的工业可靠性提出了更高的要求。同时在生产环境中工业网络必须具备较好的可靠性,可恢复性,以及可维护性。即保证一个网络系统中任何组件发生故障时,不会导致应用程序,操作系统,甚至网络系统的崩溃和瘫痪。
(三)安全性问题
在工业生产过程中,很多现场不可避免地存在易燃、易爆或有毒气体等,对应用于这些工业现场的智能装置以及通信设备,都必须采取一定的防爆技术措施来保证工业现场的安全生产。在目前技术条件下,对以太网系统采用隔爆、防爆的措施比较可行,即通过对Ethernet现场设备采取增安、气密、浇封等隔爆措施,使现场设备本身的故障产生的点火能量不外泄,以保证系统运行的安全性。对于没有严格的本安要求的非危险场合,则可以不考虑复杂的防爆措施。工业系统的网络安全是工业以太网应用必须考虑的另一个安全性问题。工业以太网可以将企业传统的三层网络系统,即信息管理层、过程监控层、现场设备层,合成一体,使数据的传输速率更快、实时性更高,并可与Internet无缝集成,实现数据的共享,提高工厂的运作效率。但同时也引人了一系列的网络安全向题,工业网络可能会受到包括病毒感染、黑客的非法入侵与非法操作等网络安全威胁。
(四)总线供电问题
总线供电(或称总线馈电)是指连接到现场设备的线缆不仅传输数据信号,还能给现场设备提供工作电源。以太网从设计之初就没有考虑到这一问题,而工业现场存在着大量的总线供电需求。
正因为有以上诸多问题,普通的商用以太网是不能够直接用于工业现场的控制的。为了解决这些问题工业以太网便应运而生。
随着互联网技术的发展与普及推广,以太网传输速率的提高和以太网交换技术的
发展,传统商用以太网的上述问题在工业以太网中正在得到解决。
上一篇:MC伺服驱动器数控系统方案
下一篇:基于紫金桥软件的天然气SCADA系统研究与实现
推荐阅读最新更新时间:2024-05-02 22:52
汽车OEM:我们需要支持4K/8K视频的下一代高速串行链路
当今,汽车中的自动驾驶,或环视方案,需要的摄像头越来越多,车外的摄像头和车内驾驶员位置显示屏之间的信号传输,成了需要解决的一个大问题;另一方面,随着视频分辨率的提升,信息娱乐系统对带宽的要求剧增。 汽车电子化程度的增加,为半导体公司创造了很大的空间,拿Maxim公司来说,20年前该公司汽车应用占总营收的份额小于1%,10年前小于10%,现在则达19%。 “我们在汽车领域看到了更多的创新机会,会将更多的研发投入到汽车中来。”Maxim Integrated 全球销售及市场营销副总裁David Loftus指出,“20年前Maxim曾主导笔记本电脑的电源市场,那时绝大多数笔记本电脑电源管理器件来自美信,但后来这个领域的商业化太快、价格
[汽车电子]
大型无尘室FFU控制及火灾报警监控系统
专案描述 Fan Filter Unit (FFU) 是通过过滤空气中的微粒子来达到净化空气的效果,也就是无尘室环境中最重要的部分。本案无尘室有两个楼层,每个楼层的控制相对独立,通过中央控制室和现场控制室来控制各楼层的23面PLC盘,再由PLC盘来控制DC FFU(直流FFU)和AC FFU(交流FFU)及火灾报警系统。 为使本案大型无尘室之FFU及火灾报警系统能够安全及维持高质量,我们选择芯惠通工业级web管理型光纤以太网交换机-JetNet 4008f。每个楼层的PLC盘采Ring的连接方式,每个PLC盘之间由于距离长故采用光纤来做连结,中央控制室的2台PC间再用以太网相连,使两个系统有效的整合在一起。 芯惠通JetNet 40
[嵌入式]
以太网供电应用中可用设备功率的估算
许多现有的以太网设备都从采用墙上适配器电源转向采用新推出的 IEEE 802.3af 以太网供电 (PoE) 标准。过去采用墙上适配器时,电源系统效率不算是大问题,但采用 PoE 情况却有所改变。功能电路开始从 10W 范围汲取电能的应用需要严格控制用电。 一旦执行 802.3af 标准要求的功能,首先,我们将确定可用的净功率。其次,我们将介绍常见 DC/DC 转换器的建模方法,计算出应用电路可用的功率,并将给出两种拓扑范例进行比较。建模过程使设计人员能在设计最初的电路前明确拓扑方式与技术问题。 PoE 前端损耗 图 1 给出了基本的结构图,显示了电源设备 (PSE) 通过DC/DC 转换器与应用电路的互连。相关计算
[电源管理]
外媒:汽车以太网系统可将搭载基于硅兼容ESD保护设备
据外媒报道称,分立和MOSFET组件以及模拟和逻辑IC的专业供应商Nexperia近日对100BASE-T1和1000BASE-T1汽车以太网系统推出开创性的、基于硅的、符合OPEN Alliance的ESD保护设备。 据了解,OPEN(单对以太网)特殊利益集团(SIG)是由汽车工业和技术提供商组成的非营利联盟,这个组织的工作目的在准备IEEE和其他国际标准,它们相互协作以鼓励广泛采用基于以太网的网络作为汽车联网应用程序的标准。 Nexperia是OPEN Alliance SIG的技术成员并且已经基于100BASE-T1和1000BASE-T1以太网的硅技术开发完全兼容的ESD保护设备。与压敏电阻等竞争技术相比,基于硅的
[汽车电子]
驱动高功率以太网络供电技术
以太网络供电 (PoE) 技术能够透过标准 Cat-5 电缆进行供电,完全不需要透过墙面转接器或其它外部电源,就能够驱动网络设备。这类系统需要两项主要组件,分别是供电的电源供应设备 (power sourcing equipment, PSE ) 及接收并使用这个电源的动力装置 (power device, PD ),如图1。
图1 具备电源设备及供电装置的典型 PoE 网络示意图
目前有许多已开发的实用PoE 应用,然而,新推出的应用所需要的功率高于现今 802.3af 标准所定义的功率限制,也就是为用电装置端提供约 13 W 的功率。现今需要新的 PoE+ 标准以满足增加功率的需求,
[工业控制]
步入控制领域的工业以太网
几年前,当现场总线大战硝烟正浓时,传统上用于办公室和商业的以太网却悄悄地进入了控制领域。近来以太网更是走向前台,发展迅速,颇引人注目。
几年前,当现场总线大战硝烟正浓时,传统上用于办公室和商业的以太网却悄悄地进入了控制领域。近来以太网更是走向前台,发展迅速,颇引人注目。究其原因,是由于工业自动化系统正向分布化、智能化的实时控制方面发展,其中,通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intranet/Internet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,但目前的现场总线尚不能满足这些要求。应该说,现场总线的出现确实给工业自动化带来一场深
[嵌入式]
工业以太网三种实现方式_工业以太网的作用
工业以太网三种实现方式 工业以太网是指用于工业控制领域的以太网,常用于自动化生产线、工厂自动化、机器人控制等领域。下面是工业以太网的三种实现方式: 基于TCP/IP协议的工业以太网:这种实现方式采用TCP/IP协议作为通信协议,支持标准的TCP/IP网络协议栈,在通信可靠性和数据传输效率方面具有优势。常用的协议有Modbus TCP、EtherNet/IP等。 基于UDP/IP协议的工业以太网:这种实现方式采用UDP/IP协议作为通信协议,支持实时性要求高的应用,如实时控制和监控等。常用的协议有Profinet、UDP/IP等。 无协议的工业以太网:这种实现方式不依赖任何通信协议,直接在以太网上进行
[嵌入式]
MC68EN360在以太网测试器中的应用
摘要: MC68EN360芯片是Motorola公司生产的一款专用通讯芯片,广泛应用于通讯设备,其接口方式灵活、支持通讯协议多、运行速度快、功能强大。在以太网为主流的LAN中,无论在现场布线阶段或运行维护阶段,都需要检测、确认和排除故障。一般的解决办法是先查电缆,再查终端。电缆的测试有很多指标和标准可以参照,简单来看,无非是衡量是否适合以太网上的通讯,只需用两台有通讯协议的设备测试一下协议的运行情况即可;而终端的检测方法一般主要是检查其IP连同性如何。因此,故障的判断很大程度上用IP连同性的方法就可以解决问题。本篇文章描述了如何用MC68EN360芯片做一个可以检测以太网的仪器,在实现功能的同时,又要求操作简单、成本低、扩
[测试测量]