随着汽车工业的发展和进步,人们对汽车的动力性、经济性、安全性及排放等方面提出了更高的要求,传统的机械式控制系统已经远远不能满足这些需要。电子化控制系统以其高精度、高速度、控制灵活、稳定可靠等特点逐渐取代了机械式控制系统,是汽车控制系统的发展趋势。
由于对控制性能的要求越来越严格,使得汽车电子控制系统对控制器的要求越来越高。控制器的开发与设计一般都要经过如图1所示的步骤,即由上层到底层,再由底层到上层的一个V字形过程。首先是控制器的上层功能设计,详细确定控制器将要实现的功能;然后生成目标程序代码;最后是控制器的底层软、硬件实现。
从控制器实现到实车测试的过程中还需要进行硬件在环实时仿真测试。这是因为在整车控制器的开发过程中,利用整车控制器硬件在仿真测试平台构建虚拟的整车现场环境。对控制器进行硬件在环仿真测试,不但可以大大加快整车控制器软、硬件的开发过程,而且开发成功的控制器具有较高的可靠性。因为仿真测试平台可以模拟出在实车试验中难以实现的特殊行驶状态和危险状态,从而对整车控制器进行全面的测试。控制器硬件在环仿真测试中,系统用数学模型来代替,控制器使用实物,系统模型和控制器之间的接口要与实际保持一致,在仿真调试完毕后,达到控制器和系统之间的“垂直安装”或“垂直集成”。控制器在完成硬件在环仿真之后,就可以进入系统集成和测试环节,最后实现初期设计的各项功能和指标。
本文基于Matlab/Simulink RTW和XPC Real-time Target实时仿真平台,配合PCI数据采集卡底层软件的开发和信号调理装置硬件设计,系统地实现了燃料电池汽车整车控制器仿真测试平台。利用该平台可以对整车控制器硬件电气特性、底层软件平台和控制算法等进行测试。
硬件在环实时仿真测试平台方案设计
硬件在环实时仿真平台构建了虚拟的整车环境,并基于虚拟的人机交互司机模型,将人作为硬件在环的一个元素引入到实际的仿真测试中,具体结构如图2所示。两个基于工业控制计算机的虚拟平台分别为虚拟整车平台和虚拟司机平台。虚拟整车平台基于Matlab/SimulinkxPC Target实时仿真环境,作用是模拟真实燃料电池客车的运行,为测试整车控制器提供所需的虚拟控制对象。虚拟司机平台基于Matlab/Simulink RTW Target实时仿真环境,作用是模拟真实燃料电池客车的操控机构,配合加速踏板为测试整车控制器提供所需的虚拟驾驶环境。当两个计算机虚拟平台对实际环境进行模拟时,通过数据采集卡、CAN通讯卡与可配置的信号处理装置相连,可配置的信号处理装置对信号进行处理,从而实现真实的复杂整车环境,直接与整车控制器连接进行仿真测试试验。并配有基于CAN总线的实时监控装置,可以全过程实时地监控仿真测试试验。
硬件在环实时仿真测试平台硬件设计
虚拟平台硬件设计
虚拟平台的硬件需要完成计算机模型产生的虚拟信号到真实信号的转换,这些信号包括数字量输入输出信号、模拟量输入输出信号和CAN通讯信号。例如燃料电池发动机启动开关信号属于数字信号,电机转速信号属于模拟信号,而控制器控制命令通过CAN总线网络进行传送。
虚拟平台的数字信号和模拟信号通过PCI接口的数据采集卡实现与真实世界的交换。采用的各种通讯卡一般都具有Matlab底层软件驱动程序,可以直接用于实时仿真。对于部分不支持Matlab实时仿真环境的数据采集卡,可以采用Matlab/Simulink环境下的S函数编写,并在Matlab环境下调用动态链接库。本文采用的PCI1731、PCI1723和PCI1720板卡并不配套Matlab驱动程序,因此采用S函数进行集成。整个虚拟平台共具备32路数字量输入接口、32路数字量输出接口、32路数字量输入/输出复用接口、32路模拟量输入接口和20路模拟量输出接口。
虚拟平台产生或接收的CAN信号通过PCI总线与CAN通讯卡相连,由CAN通讯卡通过CAN总线与待测整车控制器进行通讯。虚拟平台支持CAN2.0A和CAN2.0B扩展协议,能够同时输出2路独立的CAN信号。
信号调理器硬件设计
由于燃料电池客车上的信号比较复杂,数字信号有24V、12V和5V等不同的驱动电平和驱动方式,模拟信号也有各种电压范围和驱动功率的不同需求。而从虚拟平台经过数据采集卡输出的信号比较单一,故经过信号调理器对信号进行调理后,才能够完全再现燃料电池客车上的真实控制接口,直接与整车控制器连接进行仿真测试。
如图2所示,虚拟平台产生或接收的数字模拟信号通过PCI总线与数据采集卡相连。数据采集卡与可配置的信号调理器之间通过专用的数据线进行数据交换,经过可配置的信号调理器对信号进行必要的放大、电平转换、逻辑转换后,输出信号完全符合实际整车信号规范,并采用标准接口与待测整车控制器相连,从而实现对整车控制器的无缝连接。通过调整可配置信号调理器的配置方式,可以实现各种车辆的不同信号规范。信号调理器为灵活的母板子板设计,母板完成通用的信号连接电源供给等任务,子板完成具体的可配置信号处理功能。母板和子板联合工作,可以根据用户的需要随时更换子板电路,以满足不同仿真测试的需要。
硬件在环实时仿真测试平台软件设计
虚拟整车平台软件设计
虚拟整车平台基于Matlab/Simulink平台构建了燃料电池汽车仿真模型,该模型包括燃料电池发动机、DC-DC变换器、蓄电池、异步驱动电机及车辆负载。系统各部件模型一方面需考虑模型精度,另一方面必须满足实时性的要求。整个模型在Matlab/Simulink xPC Target实时仿真环境上运行。整车仿真模型通过PCI数据采集卡和PCI CAN卡实现与驾驶员和整车控制器的通讯。
虚拟司机平台软件设计
虚拟司机平台实现了可供驾驶员操作的虚拟驾驶环境。除了驾驶加速信号由测试人员通过踏板输入外,其余整车肩停开关、燃料电池开关、电机转速表、车速表、水温报警等控制开关和仪表均由虚拟司机平台实现。整个模型基于Matlab/Simulink RTW Target实时仿真环境实现,并利用Matlab Gauges工具箱实现了整车仪表显示和控制开关输入。Gauges是Matlab在Simulink中提供的一款用于显示监控数据的仪表开发工具,利用Gauges工具箱可以在Simulink模型中快速地开发出虚拟车用仪表系统。虚拟司机仿真模型同样通过PCI数据采集卡和PCI CAN卡实现与驾驶员和整车控制器的通讯。
实时性能分析
Matlab/Simulink为实时仿真提供了很好的软件环境。Real-TimeWorkshop代码自动生成工具可以将仿真模型编译生成实时C代码,并支持多种实时仿真目标环境,包括Matlab 工具箱RTW Target、xPC Tar-get以及第三方软件,如dSPACE等。本文选择了xPC Target和RTW Target来构建虚拟整车平台和虚拟司机平台。
整车虚拟平台承担再现真实燃料电池汽车运行的任务,是整个测试平台的核心部件。由于燃料电池汽车结构复杂、控制对象较多,为了真实再现整车运行情况,系统各部件模型除了需要满足精度要求外,还必须严格满足实时性的要求。整车虚拟平台采用的xPC Target实时仿真环境采用目标机和宿主机的结构,由Matlab生成的实时内核通过软驱或者USB闪存独立运行在目标机上,直接调用CPU资源。仿真模型通过宿主机编译生成实时代码后下载到目标机上运行,能够实现严格的系统实时仿真。
虚拟司机平台采用的RTW Target实时内核直接运行在Matlab/Simulink环境中,在同一台PC机上就能够迅速实现系统的实时仿真。其缺点是由于整个系统在Windows系统下运行,实时内核不能完全占有PC机操作系统资源,实时性受其他运行程序的影响。由于驾驶员模拟操作对实时性要求不高,因此选择RTW Target实时仿真环境能够满足这一要求。
实时仿真信号定义
虚拟整车平台、虚拟司机平台的信号定义如表1、表2所示,与目标燃料电池汽车完全保持一致。虚拟整车平台定义了燃料电池汽车各部件控制器CAN网络节点协议以及整车控制器制动信号输入和整车车速输出。虚拟司机平台系统信号包括各种驾驶员指令输出以及驾驶员面板显示信息输入,并定义了一个数据采集CAN节点。虚拟整车平台与虚拟司机平台除了车速信号、CAN网络信号的联系,其他所有信号均是与整车控制器交互。
实验分析
利用仿真测试平台可以对燃料电池整车控制器进行软硬件实时在环测试。将整车控制器通过信号调理装置与仿真测试平台按照实时仿真信号定义将相应接口信号连接起来,再分别运行虚拟整车平台和虚拟司机平台,即可用于测试。
该燃料电池汽车硬件在环实时仿真平台已经成功地应用于“十五”燃料电池城市客车电控单元的开发。在控制器上车前即可对整车控制器数字、模拟信号的电气特性、控制逻辑和算法、故障诊断功能等进行检验。配合快速原型开发工具dSPACE可以完整地实现快速原型开发整车控制器测试流程,如图3所示。
基于本仿真测试平台的试验除了待测整车控制器为实际车用控制器以外,所有的测试环境均为仿真测试平台虚拟真实环境得到,并且从控制器角度上看与整车真实环境完全一致,从而实现了低成本地、便捷地、快速地对整车控制器进行各种测试,不但提高了整车控制器的开发效率,也完善了整车控制器上车前的必要测试过程,降低了整车控制器进行实车试验的风险及成本。该平台具有通用性,可以根据需要进行不同的仿真测试,并不局限于整车控制器的开发,具有广泛的应用前景。
整车控制器经过仿真平台的反复测试后将进行实际的实车试验,而从试验中获得各部件数据又为仿真模型的进一步精确化匹配标定提供了条件,从而使仿真平台更符合实际。
关键字:燃料电池 整车控制器 仿真测试平台
引用地址:燃料电池汽车整车控制器硬件在环实时仿真测试平台设计
由于对控制性能的要求越来越严格,使得汽车电子控制系统对控制器的要求越来越高。控制器的开发与设计一般都要经过如图1所示的步骤,即由上层到底层,再由底层到上层的一个V字形过程。首先是控制器的上层功能设计,详细确定控制器将要实现的功能;然后生成目标程序代码;最后是控制器的底层软、硬件实现。
从控制器实现到实车测试的过程中还需要进行硬件在环实时仿真测试。这是因为在整车控制器的开发过程中,利用整车控制器硬件在仿真测试平台构建虚拟的整车现场环境。对控制器进行硬件在环仿真测试,不但可以大大加快整车控制器软、硬件的开发过程,而且开发成功的控制器具有较高的可靠性。因为仿真测试平台可以模拟出在实车试验中难以实现的特殊行驶状态和危险状态,从而对整车控制器进行全面的测试。控制器硬件在环仿真测试中,系统用数学模型来代替,控制器使用实物,系统模型和控制器之间的接口要与实际保持一致,在仿真调试完毕后,达到控制器和系统之间的“垂直安装”或“垂直集成”。控制器在完成硬件在环仿真之后,就可以进入系统集成和测试环节,最后实现初期设计的各项功能和指标。
本文基于Matlab/Simulink RTW和XPC Real-time Target实时仿真平台,配合PCI数据采集卡底层软件的开发和信号调理装置硬件设计,系统地实现了燃料电池汽车整车控制器仿真测试平台。利用该平台可以对整车控制器硬件电气特性、底层软件平台和控制算法等进行测试。
硬件在环实时仿真测试平台方案设计
硬件在环实时仿真平台构建了虚拟的整车环境,并基于虚拟的人机交互司机模型,将人作为硬件在环的一个元素引入到实际的仿真测试中,具体结构如图2所示。两个基于工业控制计算机的虚拟平台分别为虚拟整车平台和虚拟司机平台。虚拟整车平台基于Matlab/SimulinkxPC Target实时仿真环境,作用是模拟真实燃料电池客车的运行,为测试整车控制器提供所需的虚拟控制对象。虚拟司机平台基于Matlab/Simulink RTW Target实时仿真环境,作用是模拟真实燃料电池客车的操控机构,配合加速踏板为测试整车控制器提供所需的虚拟驾驶环境。当两个计算机虚拟平台对实际环境进行模拟时,通过数据采集卡、CAN通讯卡与可配置的信号处理装置相连,可配置的信号处理装置对信号进行处理,从而实现真实的复杂整车环境,直接与整车控制器连接进行仿真测试试验。并配有基于CAN总线的实时监控装置,可以全过程实时地监控仿真测试试验。
硬件在环实时仿真测试平台硬件设计
虚拟平台硬件设计
虚拟平台的硬件需要完成计算机模型产生的虚拟信号到真实信号的转换,这些信号包括数字量输入输出信号、模拟量输入输出信号和CAN通讯信号。例如燃料电池发动机启动开关信号属于数字信号,电机转速信号属于模拟信号,而控制器控制命令通过CAN总线网络进行传送。
虚拟平台的数字信号和模拟信号通过PCI接口的数据采集卡实现与真实世界的交换。采用的各种通讯卡一般都具有Matlab底层软件驱动程序,可以直接用于实时仿真。对于部分不支持Matlab实时仿真环境的数据采集卡,可以采用Matlab/Simulink环境下的S函数编写,并在Matlab环境下调用动态链接库。本文采用的PCI1731、PCI1723和PCI1720板卡并不配套Matlab驱动程序,因此采用S函数进行集成。整个虚拟平台共具备32路数字量输入接口、32路数字量输出接口、32路数字量输入/输出复用接口、32路模拟量输入接口和20路模拟量输出接口。
虚拟平台产生或接收的CAN信号通过PCI总线与CAN通讯卡相连,由CAN通讯卡通过CAN总线与待测整车控制器进行通讯。虚拟平台支持CAN2.0A和CAN2.0B扩展协议,能够同时输出2路独立的CAN信号。
信号调理器硬件设计
由于燃料电池客车上的信号比较复杂,数字信号有24V、12V和5V等不同的驱动电平和驱动方式,模拟信号也有各种电压范围和驱动功率的不同需求。而从虚拟平台经过数据采集卡输出的信号比较单一,故经过信号调理器对信号进行调理后,才能够完全再现燃料电池客车上的真实控制接口,直接与整车控制器连接进行仿真测试。
如图2所示,虚拟平台产生或接收的数字模拟信号通过PCI总线与数据采集卡相连。数据采集卡与可配置的信号调理器之间通过专用的数据线进行数据交换,经过可配置的信号调理器对信号进行必要的放大、电平转换、逻辑转换后,输出信号完全符合实际整车信号规范,并采用标准接口与待测整车控制器相连,从而实现对整车控制器的无缝连接。通过调整可配置信号调理器的配置方式,可以实现各种车辆的不同信号规范。信号调理器为灵活的母板子板设计,母板完成通用的信号连接电源供给等任务,子板完成具体的可配置信号处理功能。母板和子板联合工作,可以根据用户的需要随时更换子板电路,以满足不同仿真测试的需要。
硬件在环实时仿真测试平台软件设计
虚拟整车平台软件设计
虚拟整车平台基于Matlab/Simulink平台构建了燃料电池汽车仿真模型,该模型包括燃料电池发动机、DC-DC变换器、蓄电池、异步驱动电机及车辆负载。系统各部件模型一方面需考虑模型精度,另一方面必须满足实时性的要求。整个模型在Matlab/Simulink xPC Target实时仿真环境上运行。整车仿真模型通过PCI数据采集卡和PCI CAN卡实现与驾驶员和整车控制器的通讯。
虚拟司机平台软件设计
虚拟司机平台实现了可供驾驶员操作的虚拟驾驶环境。除了驾驶加速信号由测试人员通过踏板输入外,其余整车肩停开关、燃料电池开关、电机转速表、车速表、水温报警等控制开关和仪表均由虚拟司机平台实现。整个模型基于Matlab/Simulink RTW Target实时仿真环境实现,并利用Matlab Gauges工具箱实现了整车仪表显示和控制开关输入。Gauges是Matlab在Simulink中提供的一款用于显示监控数据的仪表开发工具,利用Gauges工具箱可以在Simulink模型中快速地开发出虚拟车用仪表系统。虚拟司机仿真模型同样通过PCI数据采集卡和PCI CAN卡实现与驾驶员和整车控制器的通讯。
实时性能分析
Matlab/Simulink为实时仿真提供了很好的软件环境。Real-TimeWorkshop代码自动生成工具可以将仿真模型编译生成实时C代码,并支持多种实时仿真目标环境,包括Matlab 工具箱RTW Target、xPC Tar-get以及第三方软件,如dSPACE等。本文选择了xPC Target和RTW Target来构建虚拟整车平台和虚拟司机平台。
整车虚拟平台承担再现真实燃料电池汽车运行的任务,是整个测试平台的核心部件。由于燃料电池汽车结构复杂、控制对象较多,为了真实再现整车运行情况,系统各部件模型除了需要满足精度要求外,还必须严格满足实时性的要求。整车虚拟平台采用的xPC Target实时仿真环境采用目标机和宿主机的结构,由Matlab生成的实时内核通过软驱或者USB闪存独立运行在目标机上,直接调用CPU资源。仿真模型通过宿主机编译生成实时代码后下载到目标机上运行,能够实现严格的系统实时仿真。
虚拟司机平台采用的RTW Target实时内核直接运行在Matlab/Simulink环境中,在同一台PC机上就能够迅速实现系统的实时仿真。其缺点是由于整个系统在Windows系统下运行,实时内核不能完全占有PC机操作系统资源,实时性受其他运行程序的影响。由于驾驶员模拟操作对实时性要求不高,因此选择RTW Target实时仿真环境能够满足这一要求。
实时仿真信号定义
虚拟整车平台、虚拟司机平台的信号定义如表1、表2所示,与目标燃料电池汽车完全保持一致。虚拟整车平台定义了燃料电池汽车各部件控制器CAN网络节点协议以及整车控制器制动信号输入和整车车速输出。虚拟司机平台系统信号包括各种驾驶员指令输出以及驾驶员面板显示信息输入,并定义了一个数据采集CAN节点。虚拟整车平台与虚拟司机平台除了车速信号、CAN网络信号的联系,其他所有信号均是与整车控制器交互。
实验分析
利用仿真测试平台可以对燃料电池整车控制器进行软硬件实时在环测试。将整车控制器通过信号调理装置与仿真测试平台按照实时仿真信号定义将相应接口信号连接起来,再分别运行虚拟整车平台和虚拟司机平台,即可用于测试。
该燃料电池汽车硬件在环实时仿真平台已经成功地应用于“十五”燃料电池城市客车电控单元的开发。在控制器上车前即可对整车控制器数字、模拟信号的电气特性、控制逻辑和算法、故障诊断功能等进行检验。配合快速原型开发工具dSPACE可以完整地实现快速原型开发整车控制器测试流程,如图3所示。
基于本仿真测试平台的试验除了待测整车控制器为实际车用控制器以外,所有的测试环境均为仿真测试平台虚拟真实环境得到,并且从控制器角度上看与整车真实环境完全一致,从而实现了低成本地、便捷地、快速地对整车控制器进行各种测试,不但提高了整车控制器的开发效率,也完善了整车控制器上车前的必要测试过程,降低了整车控制器进行实车试验的风险及成本。该平台具有通用性,可以根据需要进行不同的仿真测试,并不局限于整车控制器的开发,具有广泛的应用前景。
整车控制器经过仿真平台的反复测试后将进行实际的实车试验,而从试验中获得各部件数据又为仿真模型的进一步精确化匹配标定提供了条件,从而使仿真平台更符合实际。
上一篇:基于车载网络嵌入式浏览器的设计
下一篇:FPGA实现的FIR算法在汽车动态称重仪中的应用
推荐阅读最新更新时间:2024-05-03 00:43
传苹果正开发新型燃料电池 续航可达数周
据英国《每日邮报》报道,苹果正在与英国Intelligent Energy公司合作,开发一种新型燃料电池,未来或将应用在iPhone,iPad等其他iOS设备上,使这类设备的电池续航时间最高持续数周时间。
《每日邮报》报道称,Intelligent Energy所开发的燃料电池既环保又高效,将会迎合那些对电池续航时间要求高,且注重环保的用户。事实上,《每日邮报》的报道绝非空穴来风。Intelligent Energy现任首席运营官乔·沙利文(Joe O'Sullivan)此前曾是苹果公司高管。该公司最近在加州圣何塞设立了新的办公点,离苹果总部非常近。
此外,Intelligent Energy最近宣
[家用电子]
燃料电池大角逐 哪个城市优先胜出?
如果像支付宝一样,用一个关键词来总结2017年的 燃料电池 业,那么,这个词非“旺”莫属。2017年是 燃料电池 大发展的一年,在城市规划等多方面都突飞猛进,这一年发生的很多事都具有里程碑意义,因此有专家将2017年看作“ 燃料电池 全面商业化元年”。下面就随电源管理小编一起来了解一下相关内容吧。 燃料电池大角逐 哪个城市优先胜出? 燃料电池大势看好 前卫之城风口角逐 众所周知,世界上最高的山峰是珠穆朗玛峰,那么第二高的山峰呢?恐怕知者寥寥,这也是业内企业在很多方面要争“第一”的深层原因。为了抢占燃料电池发展先机,形成先发优势,很多城市都制定了详细的氢能产业发展规划,将燃料电池作为未来发展的重要组成部分。
[电源管理]
高阶整车域控制器的详细设计方案
汽车“四化”发展方向是汽车工业未来的发展趋势,其中包含自动驾驶、网联化、动力系统电气化和共享移动化。随着智能驾驶技术对于整车智能化程度要求的不断提升,对其整车的控制能力要求也大幅提升,这一过程推动整车电子电器架构逐渐从分布式架构向集中式专用域 控制器 架构进行不断演进和发展,以便提供更加高速、安全、可靠的电子架构。这一过程中,不仅要求智能驾驶功能能够运行在具有高性能软件到硬件集成的专用中央域 控制器 上,同时也要求整车控制这块也需要运行于稳定性、可靠性极高的中央与 控制器 上,这样的中央域控制器不仅需要充当对于整个车身控制的终端,也需要执行包含中央网关、动力、底盘等各域的综合控制系统端。这也是实现后续作为面向服务开发的前置条件。
[汽车电子]
新能源汽车频频着火,氢燃料电池和三元锂电池如何选择?
过去无论是厂商还是购置电动车的用户,从来只关注机能和续航里程,没人关注过电池安全,直到特斯拉曝出自燃事件后大家才开始关注电动车的安全问题。让许多过去不为人知、厂商避而不谈的三元锂电池的机能缺陷逐步浮出水面,让人们逐步意识到磷酸铁锂的益处。 三元材料在电池比能量、比功率、大倍率充电、低温性能等方面有优势,循环性能方面则是磷酸铁锂材料优势明显,在安全方面磷酸铁锂电池要优于三元材料。过去人们总是谈氢色变,觉得氢是一种比汽油还要危险得多的能量储备方法,事实果真如此吗?氢燃料电池的工作原理是怎样的?它的安全性是怎么设计的?下面就来为大家解读吧! 正如电池包一样,储氢罐是用来存储氢气的装备,燃料电池反应堆是用来把氢气和氧气转化成电能
[汽车电子]
西班牙利用3D打印技术研发高级催化剂 可用于净化燃料电池中的氢
事实证明,3D打印机的应用比最初设计出来的用途要多得多。据外媒报道,西班牙阿利坎特大学(University of Alicante)就在利用3D打印机设计和制造高级催化剂,用于减少温室气体排放的环境应用,以及净化燃料电池所需的氢气等能源应用。事实上,此类设备也被认为是一种环保的替代品,可以取代传统的汽车发动机。 (图片来源:阿利坎特大学) 得益于阿利坎特大学无机化学教授Agustín Bueno López和Dolores Lozano Castelló领导的一组研究人员所研发的一种利用3D打印设计和生产高级催化剂的新方法,上述应用得以实现。目前,研究人员还对该技术申请了专利。 (图片来源:阿利坎特大学) 科
[汽车电子]
我国学者研制超薄铂镍合金高效纳米催化剂 可改善燃料电池
中国科学技术大学曾杰教授课题组与美国阿克伦大学教授彭振猛合作,近期在质子交换膜燃料电池阴极催化剂研制方面取得重要进展,通过在钯纳米晶上生长超薄铂 镍合金原子层的方法,成功研制出钯-铂镍核壳纳米催化剂。该催化剂具有很高的铂原子利用率,在催化质子交换膜燃料电池阴极氧还原反应中表现不俗。
近年来,随着全球化石能源的消耗与环境污染的加剧,以质子交换膜燃料电池为代表的新型清洁能源的研究和应用受到广泛关注。但是,这项技术还存在着明显的瓶颈,主要表现在针对电池阴极的氧还原反应催化剂活性和稳定性较低,制约了电池的输出功率和充放电循环次数,从而阻碍了质子交换膜燃料电池的商业化进程。
面对这一挑战,曾杰教授课题组设计并研制出
[手机便携]
中国研究人员提出新质子传导电解质设计原理 可用于固态氧化物燃料电池
据外媒报道,上海交通大学密西根学院(UM-SJTU JI)陈倩栎教授及其合作者提出一种新设计原理,将具有高质子电导率的钙钛矿材料,用作固态氧化物燃料电池的电解质材料。 (图片来源:上海交通大学) 固态氧化物燃料电池是一种电化学装置,将氢气、天然气等燃料,从化学能直接转化为电能。同时,具有能量转换效率高、清洁环保等优点。然而,目前,固态氧化物燃料电池的工作温度普遍较高,约为700-1000°C,这对电池组件材料的耐高温性提出了严格的要求。 使用质子导电陶瓷,作为燃料电池的电解质材料,有望将运行温度降至450-700°C,大大降低生产成本。然而,其质子导电率需要进一步提高,以实现此类中等温度燃料电池的商业化。研究人员认为
[汽车电子]
质子交换膜燃料电池控制器的设计
质子交换膜燃料电池系统是一种功率调节设备,已广泛应用于电脑、医疗/生命维持系统、电信、工业控制等领域。它的主要功能是持续以高质量的功率供给负载。一个高性能燃料电池系统应该有一个线性和非线性负载的较低总谐波失真、效率高、可靠性好、突发电网故障和负载改变时的快速瞬态响应的净输出电压 。伴随着个人电脑和互联网的普及,低容量燃料电池产品将在工业领域和国内市场进一步增长。由于国际市场的高度竞争,许多先进的技术,例如更高的功率密度、更高的效率、智能化控制被应用在质子交换膜燃料电池系统中。
1 质子交换膜燃料电池的工作原理
质子交换膜燃料电池由一个负充电电极(阳极)、一个正充电电极(阴极)和一个电介质膜组成 。氢气在阳极氧化,氧气在阴极
[嵌入式]
小广播
热门活动
换一批
更多
最新嵌入式文章
更多精选电路图
更多热门文章
更多每日新闻
- 2024年Automechanika Shanghai海量同期活动刷新历届记录,汇聚行业智慧,共谋未来发展
- 企业文化分享 如何培养稀缺的硅IP专业人员?SmartDV开启的个人成长与团队协作之旅
- 恩智浦发布首个超宽带无线电池管理系统解决方案
- 北交大本科生探秘泰克先进半导体开放实验室,亲历前沿高科技魅力
- 新帅上任:杜德森博士(Dr. Torsten Derr)将于2025年1月1日出任肖特集团首席执行官
- 边缘 AI 如何提升日常体验
- 苹果要首发!台积电宣布2nm已准备就绪
- AMD有望用上全新芯片堆叠技术:延迟大幅减少、性能显著提升
- 宁德时代发布10月战报
- 2024年10月电池行业:增长势头不减!
更多往期活动
11月25日历史上的今天
厂商技术中心