浅谈无人驾驶发展的下一突破口

发布者:HarmoniousSoul最新更新时间:2017-07-04 来源: 21ic关键字:无人驾驶  自动驾驶 手机看文章 扫描二维码
随时随地手机看文章

无人驾驶汽车是通过车载传感系统感知道路环境,自动规划行车路线并控制车辆到达预定目标的智能汽车。

 

它是利用车载传感器来感知车辆周围环境,并根据感知所获得的道路、车辆位置和障碍物信息,控制车辆的转向和速度,从而使车辆能够安全、可靠地在道路上行驶。集自动控制、体系结构、人工智能、视觉计算等众多技术于一体,是计算机科学、模式识别和智能控制技术高度发展的产物,也是衡量一个国家科研实力和工业水平的一个重要标志,在国防和国民经济领域具有广阔的应用前景。

在无人驾驶车领域,技术的每一步发展都必须以保障个人安全为丈量,由是它的发展除了将带给人们欢喜鼓舞的便利之外,也引发了对其安全性的担忧。

谷歌、特拉斯、Zoox……还有更多公司借助模拟的方法力图使无人驾驶车的行驶里程尽快达到十亿英里。目前,无人驾驶车的发展存在两个瓶颈:一是官方对于车辆最低里程数的要求。二是实验和测试模型仍待优化。

工程师基于大数据完善无人车辆的行使模型,实验场景从太阳光到传感器,再从不同角度的传感器到汽车前方的飞行障碍以及异常的外界行为等。

而问题在于在重现现实场景并不容易,也不安全。

兰德的一份报告发现,如果要测试无人驾驶的安全性是否达到可以接受的程度,实则需要上万英里甚至数十亿英里的实验里程作证明。

“即使作最合理的打算,现有的无人驾驶车也需要几十年甚至数百年的时间才能完成预定的里程测试。而如果将测试放在现实道路上,则会是一个不可能完成的任务。”

用什么方法才能不断提高无人驾驶车辆的可靠性?

像Uber、Lyft和Zoox这样的公司诞生于大城市,并在一定条件下进行运作以降低自身的技术壁垒。但是这可能适用于世界各地的Uber们,而像传统的原始设备制造商则选择通过不断更新汽车的自动化功能来弥合与共享技术的差距。

因此,我们可以绕过在目前需要大量数据的传统技术方法,而建构起能够进行推理和学习小量数据的模型。公司在去年被Uber收购的加里·马库斯花了几年时间研究这个问题,但此类学习模型至今还没有在无人机中成为现实。

不要忘了仿真模拟

从软件到硬件的仿真模拟被合理建模时,就会为公司实验和测试他们的汽车模式提供可能性。

这包括各种各样的应用场景,包括交通、司机行为、天气以及道路环境等。

还要考虑传感器的使用情形。需要多少个相机和雷达?它们应该被放置在哪里?应该使用哪种模型硬件?

同时,灵活的随机排列也十分重要。基于此,在路上就不需要把车队和可靠的司机紧紧绑在一起。

我们仍未抵达终点

如今,诸如Vires、TaSS PreScan、CarSim、Oktal ScanNer和ROS Gazebo等产品给工程师模拟传感器及其发生机制和机械结构提供了可能。 尽管它们各有所长,但却同时忽视了对于模拟而言至关重要的领域,这包括过分简化现有的传感器输出,以及对环境如何影响自主模型的复杂程度的了解。

然而随着技术的不断发展,我们必须考虑如何以高保真的方式执行、插入和测试硬件与软件的融合之物。

高保真的模拟环境

虽然模拟大多数传感器对于外界的感知存在困难,但是简单的模拟在车辆上的应用越来越普遍。

由于低成本的LiDARs未实现的承诺和高端单元的短缺使得OEMs和Tier 1的可伸缩性变得困难,因此光学相机被报以期待。

模拟相机的模拟数据与输入的数据没有误差,因此为了正确地测试对外界感知程度,工程师需要建构出逼真的模拟环境。但是建造一个复杂的模拟光圈则非常昂贵且存在困难,因此没有人能够为了打造一辆无人汽车而模拟这个环境。

大约在一年前,我遇到了克雷格。当时他正在发布一个他称之为DeepDrive的东西。我后来得知,作为早期的工程师之一,他利用游戏兜售1.37亿美元的开发成本重现现实世界的场景,并通过展示高保真度的景象...来支持无人驾驶汽车。

几个月后,克雷格加入了一家名为Uber的小型初创公司,专注于研究模拟。

普林斯顿大学的一个研究小组详细介绍了使用GTA V的优势。它将世界范围划分为100平方英里、400万人、262种车辆、1167种不同的生物、14种天气条件、以及在城市、农村和林地环境中的7万多条动态路段。

模拟行使里程真的有用吗?

对于模拟里程效用的观点不一

支持一方认为,模拟可以用来模拟罕见情况和基线数据,罕见的情况是指难以重现或足够随机的场景。如果无人驾驶能够提供99%的可靠性,因为大部分场景已经通过模拟得以优化。而AI 或ML的一些未来技术迭代则允许我们在没有事先数据预备的情况下,对极端情况做出反应。

排除特殊情况之外,仿真对于构建基础数据集也非常有用,并且在此基础上不断进行进一步的测试。

反对一方则认为与此相对应的是:模拟环境不够好以至于不能高效地生成模型。通常,这是一个环境与车辆交互的场景,并且很难在现实场景中复现。此外,还存在着图像保真度过低的情景。

从模拟虚拟到在现实情形下的强化学习

为了帮助解决有关数据质量的一些问题,研究人员正在测试将虚拟图像输入转化为现实模型的可能性,以改进模拟实验。

谷歌曾放出消息,虽然许多政府机构还不愿意将模拟英里数作为规定中的自主驾驶测试所需里程的一部分,但随着对模拟的监管变得更加明确,这种情况可能会发生变化。

模拟是必要的

如果精确度足够高,那么模拟是有价值的。诚然,模拟可能不会解决的最后1%的自主驾驶问题。但如果技术可靠,那么在未来可以让模型完成更好的场景识别或应对更大范围的场景。

许多公司对此表示赞同。包括特斯拉,Zoox,Comma.ai,Drive .ai和极光创新公司都在积极招聘模拟工程师。

在无人驾驶领域之外

模拟技术的使用能够扩展到无人驾驶领域之外。虽然我们可以借此理解无人机如何感知周围的世界,但除此之外我们也能更好地明白交通、驾驶行为,甚至是行人行为的潜在逻辑。

退一步讲,一个模拟环境中存在足够多的特定模型和动态生命,因此我们也可以更好地理解机器人,它们将与我们的真实世界和数字世界发生交互。

像Improbable这样的公司已经瞄准了这个潜在市场。投资者们也已经认识到,该技术作为未来模拟世界的建筑师其所隐藏的价值。

我们才刚刚触及这项技术的表明。许多公司正在大力发展该项技术,一些初创公司也已经开始开发独立的软件。随着研究深入,预计会有各种各样的新选手进入市场。那些最早成功人有机会成为早期的领导者,或能带领其他人更好地进行阶段式的发展。


关键字:无人驾驶  自动驾驶 引用地址:浅谈无人驾驶发展的下一突破口

上一篇:特斯拉二季度交车2.2万辆 同比增长53%
下一篇:陆地方舟新能源物流车打通城市配送“最后1公里”!

推荐阅读最新更新时间:2024-05-03 01:17

华为自动驾驶操作系统内核获得ASIL-D认证
5月18日消息,据华为官网报道,华为自动驾驶操作系统内核(含虚拟化机制)成功获得业界Safety领域最高等级功能安全认证(ISO 26262 ASIL-D),成为我国首个获得ASIL-D认证的操作系统内核,该系统内核已成为业界首个拥有Security & Safety双高认证的商用OS内核。 ISO 26262 功能安全标准是目前欧美和国内高安全行业的强制准入标准,其对产品的开发流程管理、安全架构设计、安全编码和安全测试等方面有极苛刻的要求。除自动驾驶操作系统内核外,包括华为智能电动、自动驾驶全栈解决方案、MDC智能驾驶计算平台都先后获得ISO 26262功能安全ASIL D级认证。 华为自动驾驶操作系统内核功能安全ASI
[汽车电子]
【盘点】八大跨界无人驾驶的科技巨头公司 中国占两席
  今年以来,美国、新加坡、澳大利亚、芬兰和迪拜等众多国家已经开始小规模进行无人驾驶车辆的试运行。无人驾驶汽车也是苹果、谷歌等大型科技公司目前关注的焦点领域,会否成为下一个科技企业创造技术和业绩奇迹的领域?   无人驾驶汽车作为如今实时资讯中占有与关注度都相当高,时不时擦肩而过的资讯都是无人驾驶汽车的发展趋势,那么到底如今的无人驾驶汽车进展如何,国内外哪些科技巨头与汽车企业有怎样的爱恨情仇呢?下边小编为诸位盘点明细。    苹果   苹果CEO蒂姆·库克曾表示,汽车行业将发生“巨大的变化”,“在我看来,软件将成为未来汽车中越来越重要的组成部分。自动驾驶会变得更为重要”。   苹果无人驾驶汽车项目命名为Titan,研发工作始于两
[机器人]
毫米波雷达在自动驾驶中的工作流程
一、车载雷达的发展 随着 ADAS 市场渗透率快速提升,核心零部件的毫米波雷达市场需求也进入快速上升通道。在L1-L3级自动驾驶中,毫米波雷达被用于目标侦测和目标分离,从而实现各种ADAS主动安全应用,在L4-L5级自动驾驶系统中搭载毫米波雷达成像技术。随着自动驾驶等级的提高和多种主动安全应用的搭载,长距(LRR)、中距(MRR)、短距(SRR)车用毫米波雷达的装配数量会大幅提升,并最终实现360度全覆盖化。相比于国外企业,车载毫米波雷达在国内仍处于起步阶段,民用的毫米波雷达追求系统的小型化和低成本。90 年代,77GHz 毫米波雷达采用的还是砷化镓 (GaAs) 的工艺,一个毫米波雷达中,配7-8颗以上的前端射频芯片,再配上3-
[嵌入式]
毫米波雷达在<font color='red'>自动驾驶</font>中的工作流程
Tallysman推出新型嵌入式GNSS天线 适用于自动驾驶汽车
据外媒报道,Tallysman Wireless推出了一系列针对自动驾驶汽车市场的AccuAuto车载天线。该公司称,此款紧凑坚固的AccuAuto嵌入式天线可提供市场上其他嵌入式自动驾驶汽车天线所没有的关键功能。 (图片来源:Tallysman) 汽车导航系统正从精度为±3 到 5米(低精度GNSS代码定位)的GNSS辅助导航,过渡到精度为 0.1米(高精度GNSS相位定位)的驾驶辅助(如车道保持)和自动驾驶车辆导航。 目前大多数车辆车顶安装的GNSS天线能够提供导航所需的精度,但缺乏辅助驾驶或自动驾驶车辆操作所需的精度。Tallysman的AccuAuto新系列天线旨在提供强大的代码和相位信号,能实现高精度实时动
[汽车电子]
Tallysman推出新型嵌入式GNSS天线 适用于<font color='red'>自动驾驶</font>汽车
365天0系统事故,这家企业的无人驾驶物流车交出满意答卷
广告摘要声明广告 2021年3月,西南地区首批无人驾驶物流车正式投用,到今年3月这批由驭势科技打造的无人驾驶物流车已经正式运营一周年。 回顾过去的365天,无人驾驶物流车在汽车制造等实体经济场景的应用优势愈发清晰,再次交出了惊艳的“成绩单”。 直面痛点 迎难而上 对于绝大多数传统的物流企业而言,厂内固有人力运输模式在成本、安全性和高效性上往往不可兼得。厂区基础设施容易老化,人力和运维成本逐年爬升。运输车辆在厂内运营,还面临着以下痛点: ·路面可能存在狭窄、不平整的情况,对双向行驶的物流车提出了较高的驾驶技术要求。 ·物流车经常需要拖载大体积货物,以及随时应对复杂工况、突发事件,对老司机而言都是不少的挑战。 ·部分西南地区夏季不
[机器人]
全球汽车 AI 大会在上海举行,谷歌无人车之父现场说了啥?
无论你对技术抱有多大的怀疑,一两年之后你都不得不承认,机器的学习能力远超你的学习能力。这一点我已经很早就意识到了,在 2015 年的时候我就预测,在 2050 年之前的某一个时间节点,机器驾驶一定能够全面超越人类驾驶。   8 月 24 日,2017 全球汽车 AI 大会在上海举行。优达学城( Udacity )联合创始人兼总裁,斯坦福大学终身教授,原谷歌副总裁、Google X 实验室联合创始人 、 谷歌无人车 之父塞巴斯蒂安 · 特龙( Sebastian Thrun )来到现场,分享他与无人车结缘的故事,以及他对无人车未来的一些思考。   塞巴斯蒂安 · 特龙在2017 全球汽车 AI 大会   塞巴斯蒂安 · 特龙于
[嵌入式]
自动驾驶中神经网络模型量化技术:INT8 or INT4?
编者按:在自动驾驶领域,神经网络的模型量化技术是一个研究热点。本文主要讨论在维持实时性与安全性两项重要指标的同时,INT8与INT4的模型量化数据比较,并揭示了INT8作为当前市场主流技术的原因。 背景介绍 如今深度神经网络(DNN)已成为大多数AI应用程序中的常见算法,比如计算机视觉、语音识别和自然语言处理等方面,这些网络所表现的超强能力使其成为AI历史的里程碑。但是,它们一方面具有最先进的性能,另一方面却需要巨大的计算能力。因此可以看到,已经有许多硬软件的优化技术以及专门的体系结构开发,在不影响其准确度的情况下,能够高性能和高效率地运行这些模型【8】。 在AI最具有挑战性应用之一的自动驾驶系统中,DNN的优秀表
[嵌入式]
<font color='red'>自动驾驶</font>中神经网络模型量化技术:INT8 or INT4?
德研制人工智能变形汽车 自动驾驶自动导航
    德国人工智能研究中心近日推出一款人工智能“变形”电动车,该车行动灵活,可根据现有交通状况“变形”,将来还有望实现自动驾驶。   人工智能研究中心将这种变形车称为“EO智能连接车”,该车底盘灵活多变,可通过减小底盘、升高驾驶室实现“变形”,变形后可将多辆同款车辆连接起来,形成“公路列车”,不仅节省空间,且易于操控。   人工智能研究中心机器人创新中心主任弗兰克·基希纳说,连接成“公路列车”后,所有车辆可实现统一操控,节约能源,增加行驶距离。而且,在车尾连接行李架等也很方便。   据介绍,“EO智能连接车”可在市中心、停车场等狭窄空间自如行动,特殊的转轴让其每个轮子均可旋转90度,实现“侧面停车”。另外,大约7
[汽车电子]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved