三相异步电机的工作原理及基本结构

发布者:innovator8最新更新时间:2023-03-20 关键字:三相异步电机  电动势  基本结构 手机看文章 扫描二维码
随时随地手机看文章

三相异步电机(Triple-phase asynchronous motor)是感应电动机的一种,是靠同时接入380V三相交流电流(相位差120度)供电的一类电动机,由于三相异步电动机的转子与定子旋转磁场以相同的方向、不同的转速旋转,存在转差率,所以叫三相异步电动机。三相异步电动机转子的转速低于旋转磁场的转速,转子绕组因与磁场间存在着相对运动而产生电动势和电流,并与磁场相互作用产生电磁转矩,实现能量变换。


三相异步电机的工作原理

当向三相定子绕组中通入对称的三相交流电时,就产生了一个以同步转速n1沿定子和转子内圆空间作顺时针方向旋转的旋转磁场。由于旋转磁场以n1转速旋转,转子导体开始时是静止的,故转子导体将切割定子旋转磁场而产生感应电动势(感应电动势的方向用右手定则判定)。由于转子导体两端被短路环短接,在感应电动势的作用下,转子导体中将产生与感应电动势方向基本一致的感生电流。转子的载流导体在定子磁场中受到电磁力的作用(力的方向用左手定则判定)。电磁力对转子轴产生电磁转矩,驱动转子沿着旋转磁场方向旋转。

 

 

三相异步电机正反转原理图

 

 

三相异步电动机绕组图

通过上述分析可以总结出电动机工作原理为:当电动机的三相定子绕组(各相差120度电角度),通入三相对称交流电后,将产生一个旋转磁场,该旋转磁场切割转子绕组,从而在转子绕组中产生感应电流(转子绕组是闭合通路),载流的转子导体在定子旋转磁场作用下将产生电磁力,从而在电机转轴上形成电磁转矩,驱动电动机旋转,并且电机旋转方向与旋转磁场方向相同。


三相异步电机的基本结构

一、定子部分

1.定子铁心:由导磁性能很好的硅钢片叠成——导磁部分。

2、定子绕组:放在定子铁心内圆槽内——导电部分。

3、机座:固定定子铁心及端盖,具有较强的机械强度和刚度。


二、转子部分

1、转子铁心:由硅钢片叠成,也是磁路的一部分。

2、转子绕组:1)鼠笼式转子:转子铁心的每个槽内插入一根裸导条,形成一个多相对称短路绕组。2)绕线式转子:转子绕组为三相对称绕组,嵌放在转子铁心槽内。


三、气隙

异步电动机的气隙是均匀的。大小为机械条件所能允许达到的最小值。

 

 

三相异步电机的接线方法

三相异步电动机的定子部分在结构上和同步电动机的定子部分完全相同。

对中、小容量的低压异步电动机,通常定子三相绕组的六个出线头都引出,这样可根据需要灵活地接成“Y”形或“D”形。

 


关键字:三相异步电机  电动势  基本结构 引用地址:三相异步电机的工作原理及基本结构

上一篇:无刷直流电机的电流换向电路 无刷直流电机的三相全桥驱动电路
下一篇:三相同步电机的概念及工作原理

推荐阅读最新更新时间:2024-11-02 06:27

步进电机的结构基本工作原理
步进电机是一种可以与脉冲信号同步准确地控制旋转角度和转速的电机,步进电机的也称为“脉冲电机”。由于步进电机无需使用位置传感器仅通过开环控制即可实现准确的定位而被广泛用于需要定位的设备中。 步进电机的结构(两相双极) 下图从左到右分别是步进电机的外观示例、内部结构简图和结构概念简图。 在外观示例中,给出的是HB(混合)型和PM(永磁)型步进电机的外观。在中间的结构图给出的也是HB型和PM型的结构。 步进电机是线圈固定、永磁体旋转的结构。右侧的步进电机内部结构概念图是使用两相(两组)线圈的PM电机示例。在步进电机基本结构示例中,线圈配置在外侧,永磁体配置在内侧。线圈除了两相外,还有三相和五相等相数较多的类型。 有些步进电机具有
[嵌入式]
步进电机的<font color='red'>结构</font>及<font color='red'>基本</font>工作原理
通用型PLC的硬件基本结构
通用型PLC的硬件基本结构如图1所示,它是一种通用的可编程控制器,主要由中央处理单元CPU、存储器、输入/输出(I/O)模块及电源组成 图1 通用型PLC的硬件基本结构 主机内各部分之间均通过总线连接。总线分为电源总线、控制总线、地址总线和数据总线。各部件的作用如下: (1)中央处理单元CPU PLC的CPU与通用微机的CPU一样,是PLC的核心部分,它按PLC中系统程序赋予的功能,接收并存储从编程器键入的用户程序和数据;用扫描方式查询现场输入装置的各种信号状态或数据,并存入输入过程状态寄存器或数据寄存器中;诊断电源及PLC内部电路工作状态和编程过程中的语法错误等;在PLC进入运行状态后,从存储器逐条读取用户程序,经过命令解释
[嵌入式]
通用型PLC的硬件<font color='red'>基本</font><font color='red'>结构</font>
选取降压拓扑结构开关电源电感器的基本要点
  开关电源电感器是开关电源设备的重要元器件,它是利用电磁感应的原理进行工作的。它的作用是阻交流通直流,阻高频通低频(滤波),也就是说高频信号通过电感线圈时会遇到很大的阻力,很难通过,而对低频信号通过它时所呈现的阻力则比较小,即低频信号可以较容易的通过它。电感线圈对直流电的电阻几乎为零。   图1所示为一个降压拓扑结构开关电源的架构,该构架广泛应用于输出电压小于输入电压的开关电源系统。在典型的降压拓扑结构电路中,当开关(Q1)闭合时,电流开始通过这个开关流向输出端,并以某一速率稳步增大,增加速率取决于电路电感。根据楞次定律,di=E*dt/L,流过电感器的电流所发生的变化量等于电压乘以时间变化量,再除以这个电感值。由于流过负载电阻
[电源管理]
选取降压拓扑<font color='red'>结构</font>开关电源电感器的<font color='red'>基本</font>要点
步进电机和伺服电机的主要区别
在许多领域都需要各种电机,包括知名的步进电机和伺服电机。但是,对于许多用户而言,他们不了解这两种电机的主要区别,因此他们始终不知道如何选择。那么,步进电机和伺服电机之间的主要区别是什么? 基本结构 ▲步进电机结构图 ▲伺服电机结构图 下文简单叙述它们的差异: 1、工作原理 这两种电机在原理上有很大的不同,步进电机是将电脉冲信号转变为角位移或线位移的开环控制元步进电机件,查看步进电机的工作原理。 而伺服主要靠脉冲来定位,伺服电机本身具备发出脉冲的功能,所以伺服电机每旋转一个角度,都会发出对应数量的脉冲,这样,和伺服电机接受的脉冲形成了呼应,或者叫闭环,这样系统就会清楚发了多少脉冲和收了多少脉冲回来,从而能够精确的控制电机
[嵌入式]
步进电机和伺服电机的主要区别
四种基本程序结构
下面我们介绍四种基本程序结构 1) 顺序结构 * 程序模块或指令依次执行的结构。 2) 分支结构 * 根据条件,转向不同程序段(分支)的结构。 * 分支不应是模块间的转移,执行分支后应返回流程主线。 * 注意防止从一个分支的出口进入另一个分支的入口 3) 循环结构 * 按循环控制条件重复执行某一段程序,用于连续重复性操作。 * 循环圈包括循环体与循环控制;循环结构还包括循环初始化与后处理。循环控制有计数循环与条件循环两种。 * 循环可以嵌套,但不应交叉,也不要从循环体外跳入循环圈。 转载须保留地址:http://www.51hei.com/mcu/286.html 4)
[单片机]
怎样测量蓄电池的好坏
蓄电池的优劣通常是根据蓄电池的电动势及其内阻的大小来判断的;电动势是指蓄电池外开路情况下正、负极间电位差。内电阻是指蓄电池在充放电时,蓄电池内部所呈现的电阻。对电池在充电时。电池电压升高很快,而在对其放电时,端电压又下降很快则说蓄电池的内阻大,其容量小为不良电池;另有蓄电池的电动势(两端悬空)为正常值,但用蓄电池容量测试表测之,反映为很小或为零,则此蓄电池内极脱落,此电池为报废电池。 1、从外观判断 观察外观有无变形、凸出、漏液、破裂炸开、烧焦、螺丝连接处有无氧化物渗出等。 2、带载测量 若外观无异常,UPS工作于电池模式下,带一定量的负载,若放电时间明显短于正常放电时间,充电8小时以后,乃不能恢复正常的备用时间,判定电池
[测试测量]
怎样测量蓄电池的好坏
三相异步电机中转矩大小与转速有什么影响?
对于任何极数的电动机产品,相对较高的转速和较大的转矩,对于拖动负载是比较理想的结果,两者的关系如何确定和权衡,是电机设计与实际工况适应性的关键要素。 起动转矩、额定转矩和最大转矩,是电动机产品的主要性能指标,起动转矩反映电机的起动能力,最大转矩反映电机的过载能力,而额定转矩则是电机产品正常工作能力的具体体现。 对于三相异步电动机,电机不同转速条件下所对应的转矩大小关系,可以通过具体的特性曲线进行直观描述,反映电机转速,一方面可通过转速实际值进行,另一方面可通过转差率进行定性描述,转差率越大,则表明电机的转速与同步转速相差较多,为了满足一些特殊场合的应用需求,有专门的高转差电机,相对于同极数、同功率普通电机,高转差电机的堵转
[嵌入式]
六种基本DC/DC变换器拓扑结构总结
六种基本DC/DC变换器拓扑,依次为buck,boost,buck-boost,cuk,zeta,sepic变换器     半桥变换器也是双端变换器,以上是两种拓扑。 半桥开关管电压应力为输入电压.而且由于另外一个桥臂上的电容,具有抗偏磁能力,但是对于上面一种拓扑,通常还会加隔直电容来提高抗偏磁能力.但是如果采用峰值电流控制,要注意一个问题,就是有可能会导致电容安秒不平衡的问题.要需要其他方法来解决。半桥变换器可以通过不对称控制来实现ZVS,也就是两个管子交替导通,一个占空比为D,另外一个就为1-D.就是所谓的不对称半桥,通常采用下面一种拓扑.对于不对称半桥可以采用峰值电流控制。 正激变换器 绕组复位正激变换器   LCD
[电源管理]
六种<font color='red'>基本</font>DC/DC变换器拓扑<font color='red'>结构</font>总结
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved