浅析电动汽车BMS的功能实现

发布者:灵感之翼最新更新时间:2023-09-19 来源: elecfans关键字:电动汽车  BMS  能量密度 手机看文章 扫描二维码
随时随地手机看文章

工业革命以来,汽车行业蓬勃发展,传统的燃油车在排放方面也给生态环境带来巨大的影响。2021年交通运输碳排放占全社会碳排放10.4%。绿色发展已成为全球共识,截至目前共有197个国家签署了《格拉斯哥气候协议》、138个国家做出了净零排放承诺。“能源电气化,电气绿色化”也是迈向碳中和的重要战略,因此发展新能源汽车不仅是我国从汽车大国迈向汽车强国的必经之路,也是应对气候变化、推动绿色发展的战略举措。


电池是电动汽车的动力来源,其容量及能量密度影响着汽车的续航,其品质影响着汽车的安全性能。如何避免应用中的电池过度充、放电,改善电池组中各单体电池的不对称性,提高电池组的效率,延长其使用寿命都是电动汽车的关键技术问题。电池管理系统(Battery Management System, BMS)作为连接电动汽车电池组、整车系统和电机的重要桥梁,通过与动力电池紧密结合的传感器,对电池的电压、电流、温度等进行实时检测,实现对汽车电动系统的全面管理。


总之,作为电池系统的核心,BMS在电动汽车中扮演着重要的角色。对BMS关键技术的探究具有重要意义。


一、BMS的功能模块

pYYBAGSefDCAEhxEAAEUIpVXlYI361.png

图1 BMS功能一览

BMS是动力电池的中枢,负责管理、维护、监控电池各个模块,肩负着安全保护、提高能量利用率、延长电池使用寿命、帮助电池正常运行的重任。

BMS主要的功能包括:电池物理参数实时监测、电池状态估计、在线诊断与预警、充放电与均衡管理、热管理及安全保护等等。

二、功能核心技术实现

1、电池状态监测

BMS要实现诸多功能,首先得实现对电压、电流、温度等电池物理数据的采集。

1.1、电压监测

电动汽车电池由几千节单体电池经过并联、串联组成,以满足汽车对电压及容量的要求。因此每只电池的状态变化都会影响电池组的性能。电压是反应电池运行状态的重要参数,因此必须对电压进行实时监测。

GB/T 38661-2020(电动汽车用电池管理系统技术条件)对电压检测精度有明确的要求,如图2所示:

pYYBAGSefFCAdSQZAABLLQ58QNM635.png

图2 GB/T 38661-2020对电压监测的要求

BMS主要利用专用的电池电压监测芯片对多单体电池的电压进行采集测量,也就是AFE芯片(Analog Front End)。目前市场占比较大的厂商有:ADI、ST、TI、NXP等。

以ADI的LTC6811为例,图3是推荐采样电路图:

poYBAGSefF2AbuObAAGivNUtRyo157.png

图3 LTC6811推荐采样电路

其中电池单体通过串联的方式依次叠加,采样芯片与电池连接如图所示,并且由100Ω的串阻及10nF的电容组成RC电路进行滤波,实现对电压的采集。

由于芯片处理的是数字信号,而采集到的信号是模拟信号。所以LTC会通过ADC(Analog To Digital Converter,模数转换器)将采集到的模拟信号转化成数字信号进行计算、储存及显示。

1.2、温度监测

温度对电池性能的影响是最大的,反映在电池容量、电压和使用寿命上:温度降低,电池内阻加大,电池化学反应速度放慢,导致电池功率和能量输出下降;温度升高,则会加剧电池内部的反应速度,但是较高的温度会破坏电池内部的化学平衡,影响电池的使用寿命。

一般来说,锂离子电池适宜的工作温度为15°C~35°C,而电动汽车的实际工作温度为-30°~50°C。因此需要根据电池的温度进行散热或者供暖,也就是汽车的热管理。所以精确采集电池温度是及其重要的。

GB/T 38661-2020中对温度监测精度的要求如下:

poYBAGSefHOAGXI5AAB3B9s-jNU837.png

图4 GB/T 38661-2020对温度监测的要求

对电池的温度采样电路,基本都是通过ECU测量外置的NTC电阻阻值,然后根据R-T曲线转换成电池的温度值。

NTC温度传感器主要以Mn、Cu等金属元氧化物为材料,经过陶瓷和半导体计算结合制成,其工作原理是:温度较低时,复合材料载流子数目少,电阻值较高,当温度升高时,载流子的数目相应增加,电阻对应降低,其R-T曲线如图5所示。

poYBAGSefIaAXBiFAADe4B9925A362.png

图5不同温度系数的热敏电阻R-T曲线

由图5可以看出R-T曲线并直线对应关系,在低温中阻值变化较大,高温变化较小,测量时会有较大的误差,所以需要在工作电路中加入三极管,使测量精度更高,工作电路如图6所示:

poYBAGSefJeASHl-AAEbzGmttg4780.png

图6温度采样原理图

在低温时,传感器电阻值大,线路中仅10kΩ接通,三极管截止。此时传感器电阻值与10kΩ电阻阻值接近,因而测得数值更为准确;在高温时,传感器电阻值变小,届时阻值远小于10kΩ,ECU使三极管导通,电路通过1kΩ电阻与三极管串联后和10kΩ电阻并联,经过传感器搭铁,此时阻值与1kΩ相近,这样即使温度升高也能保证测量的准确性。

1.3、电流监测

汽车动力电池的充电、放电功率都是非常大的,在BMS工作时,总电流是需要特别关注的参数之一。当发生短路、过流故障时,电流的检测就是保护电池的第一道屏障。电流的监测相比电压跟温度不同。在数量上,整个动力电池系统中只有一个总电流的信息需要监测;l在频率上,电流采样的频率会非常高以满足SOC(State Of Charge,电池荷电状态)评估的要求。

GB/T 38661-2020中对电流精度监测的要求如下:

pYYBAGSefKuAN8y1AAAsScg14Ac470.png

图7 GB/T 38661-2020对电流监测的要求

目前应用在BMS中的电流采集方案有两种:一种是采用分流器,根据最基本的电压电流关系来进行测量;另一种是基于电流传感器的电流监测,其中分为霍尔传感器和磁通门传感器。

1.3.1、分流器方案

分流器方案是在电池工作回路中串联一个分流电阻,然后通过测量两端的压降再根据欧姆定律计算回路电流,其原理图如下:

poYBAGSefLqABELxAABAZBhTw-Q093.png

图8分流器测电流原理图

其中的分流电阻是一个阻值非常小的电阻,市面上主流为0.1mΩ、0.15mΩ,而电动汽车的工作电流一般为500A,测量的压降往往在50mV以下,所以需搭配放大电路使用。

1.3.2、传感器方案

传感器方案分为霍尔传感器和磁通门传感器,均为间接式测量方案。下图是霍尔电流传感器的原理图:

poYBAGSefNqANModAAIenJn76-c103.png

图9霍尔电流传感器原理图

霍尔电流传感器是基于霍尔效应原理进行工作的。当原边线路通过电流时,电流会在磁芯上产生磁通量,在磁芯间隙中,霍尔元件的载流子受到洛仑兹力的影响,使运动的轨迹发生偏移,并在材料的两端产生电荷累积,形成垂直于电流方向的电场。也就是说当有原边电流通过时,霍尔元件会产生一个mV级的感应电压,再经过运算放大器等电子电路,转化成副边电流,从而计算出原边电流。

磁通门电流传感器是利用被测磁场中高导磁铁芯在交变磁场的饱和激励下,其磁感应强度与磁场强度的非线性关系来测量电流的一种方式,工作原理如下图:

pYYBAGSefPqALF8kAAKiW_B5090643.png

图10磁通门电流传感器原理图

磁通门电流传感器工作时,其中的芯片会发出一个固定的高频率交流方波,使磁芯处在一个往复饱和的状态;当被测电流为0时,则检测线圈输出的感应电动势只含有激励波形的奇次谐波,波形正负上下对称(如图 10右上方波形);当由被测电流不为0时,被测电流会在磁芯中产生一个磁场,这个磁场会与激励信号的磁场叠加或抵消,叠加时使磁芯提前饱和,抵消时使磁芯延迟饱和,导致副边感应电流发生偏置(如图10右下方波形),此振幅差与被测电流成比例关系,因此通过测量此振幅差来计算被测电流。

以上就是目前应用较多的电流检测方案,他们各有优缺点:

分流器拥有精度高、温漂小、价格低及输出频率高等优点,但是不足的地方首先是会产生热损耗。假设电流为500A,会产生约25W的发热功率,这对PCBA来说是较大的发热,需要良好的散热设计。随着电动汽车里程容量提升,汽车的电流上限会提高,其发热损耗也会加大;其次是隔离问题,由于分流器是串联进主电路的,因此需要增加隔离器件对低压供电和CAN信号传输电路进行进行隔离保护,导致成本上升。

霍尔电流传感器拥有价格低、响应快、电路简单等优点,但是由于实际使用上输入输出曲线并非完全的线性关系,因此在精度方面会比另外两种差。特别是在小电流测量时,误差凸显比较明显。

磁通门电路传感器上限电流可以做到很大,并且受温度影响小、发热小、精度高,可以为BMS提供电流保护及SOC计算支持,也是目前市场上最受欢迎的方式。缺点是会受外部磁场的干扰,因此需要在设计时需考虑磁干扰。

各个方法的特点总结入下表:

poYBAGSefRuAM0UMAAJz2YcIEVA600.png

2、电池状态分析

SOC(State Of Chanrge,电池荷电状态)和SOH(State Of Health,电池健康状态)是电池系统中的2个重要参数,为电池安全保护、充放电控制、热管理等功能提供参考,因此精确及时的获取SOC/SOH信息对于提高电池寿命和保障电池安全至关重要。然而,作为电池内部参数,SOC特别是SOH无法被直接且准确的测量,只能通过处理电池的电气特性,对SOC/SOH进行估计。

2.1、SOC的估计

SOC是反映电池当前可用容量占最大可用容量百分比的一个参数,计算公式为:

poYBAGSefTeALitsAAAmfTlwZsQ527.png

SOC就是我们常说的剩余电量,它的估算方法一般有直接法跟间接法,具体如下图所示:

pYYBAGSefWGAS7opAAFNQpD9KMI971.png

图12电池SOC估算方法

2.1.1安时积分法

安时积分法是通过计算电池在充放电时测量电流对时间的积分来估计SOC的,计算公式如下:

poYBAGSefUuAZybJAAArAWwPEFM441.png

式中:t0为初始时刻;tk=t0+k*Dt,Dt为采样间隔;S0ck和S0c0分别为tk和t0时刻的SOC值;h为库伦效率;Ik-1为k-1时刻的电流。

举个例子, 1组容量为100Ah的电池能够以100A电流放电1个小时。假如以50A电流放电1个小时,则SOC就为50%,那再以50A电流放电半个小时,则SOC就为25%。也就是通过能量守恒计算SOC,所以电流的采样精度越高、采样时间越快,那SOC的估算就越准确。

但是从计算公式中不难看出,其中误差点也很明显:

1、SOC初始值,由于电池的启停是随机的,其起始和终止的状态无法确定,并且随着电池老化或者环境变化,会导致电池最大可用容量发生变化,因此很难获得准确的SOC初始值;

2、由于电流在运行中不是恒定的,采集过程中的误差会由于积分计算不断累积,导致SOC的误差逐渐增大,因此需做类似满充的矫正措施;

2.1.2、开路电压法

开路电压法是一种查表法,根据测量到的电压,在SOC-OCV关系表中找到对应的SOC,部分SOC-OCV关系表如下图:

poYBAGSefYeAAi5JAAI-gHhcT34598.png

图13 SOC-OCV关系表

该方法在实际应用中主要会受到以下限制:
1、不同电池的SOC-OCV关系是不同的,需找到对应的关系图才能找出对应SOC;

2、此方法需要在电池处于平衡状态时精度才高,要达到令人满意的平衡状态,电池需进行长时间的静置;

3、有些类型的SOC-OCV关系在中部曲线非常平缓,导致很小的OCV误差也能导致很大的SOC误差。

4、电池老化及工作环境也会对SOC-OCV曲线有影响。

目前SOC主流的估计方法是安时积分法跟开路电压法联合使用,再结合滤波、模型、温度等矫正方式进行测算。

2.1.3、基于模型的方法

基于模型的方法首先建立电池数学模型,根据输入信号计算模型输出值,然后与实际值进行比较,不停的更新模型状态跟系统状态,给出SOC估计结果。不同的电池、不同的电路需要建立的模型不一样,导致此方法计算量较大。此方法目前也是主要的发展方向。

2.1.4、机器学习方法

机器学习的方法是通过神经网络等算法拟合测量信号(电压、电流、表面温度等)与SOC的关系,根据测量信号直接对电池SOC进行估算。

此方法需要大量的数据及计算,对硬件算力要求较高。出于成本的考虑,目前该方法的应用面较窄。

2.2、SOH的估算方法

SOH是用来评估电池老化或衰退程度的一个重要指标,该参数以百分比的形式表示健康状态,新电池的SOH为100%。其中电池容量和内部阻抗是计算电池SOH的常用指标,一般电池SOH低于80%就应该更换了。

3、电池能量控制

电池是将化学能转化成电能的装置,在现代社会生活中的各个方面发挥有很大作用,其中核心是能量的存储与转化,也就是电池的充放电过程。

3.1、电池的充电原理

以单节锂电池为例,电池的充电过程可以分为四个阶段:恒流预充、大电流充电、恒压充电以及充电终止。

恒流预充:用于电池完全放电后恢复性充电,避免大电流充电对电池寿命产生影响。

大电流充电:当电池电压上升到恒流充电阈值时,即能提高充电电流,进入快速充电阶段,电压会随着充电进行快速升高,直至电压达到额定电压。

恒压充电:当电池电压上升到额定电压时,采取恒压充电,电流根据电芯的饱和程度,随着充电时间慢慢减少。

充电终止:当电流强度减少到0.01C时,认为充电可以终止。

电池组的充电过程与其类似,区别是电动车电池组是由电池串联及并联组成的,需要采取均衡充电方法,在各单体电池上加上并联均衡电路,起分流作用。当某个电池先充满时,均衡装置能阻止电池过充,将多余的能量转化为热能,并继续对未充满的电池充电。

3.2、电池均衡管理

电动车电池组是由多个电池组成的,由于生产过程或者使用损耗等问题,各电芯的电量多少都会存在差异,其影响会导致相对较快充满的电池过充,由于保护电路的纯在,未充满的电池将会停止充电,造成容量丢失,而放电时为了避免电池过放,保护电路会在出现容量低于设置值的电池时切断供电,也会造成容量丢失,也就是“木桶原理”,因此,为了保持电池的一致性,则需要对电池组做均衡管理。

其中均衡分为被动均衡跟主动均衡:

被动均衡一般采用电阻放电,使较高电量单体放电至较低电量的单体一致。这种方法电路简单可靠,也是目前市场应用较多的方法。考虑到目前电动汽车的电池一致性越做越好,电池在长时间使用后的散差其实很小,因此被动均衡的性价比较高;

主动均衡则是利用电容、电感或者DC-DC实现均衡。其原理是将高电量单体的能量放到电容等储能元件进行储存,再控制储能元件连接低电量单体进行充电。主动均衡具备电能利用率高、均衡速度快等优点,但是存在均衡电路结构复杂、成本高以及可靠性低等问题,目前有着较高的技术壁垒。

4、电池安全保护

电池保护是BMS的核心功能,保障电池在常态及工作状态下都能安全运行,通常由保护电路板和PTC等电流器件协同完成。保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。

4.1、过充过放保护

电池在充电前期为恒流充电,随着充电过程,电压会上升到额定电压,之后转为恒压充电,使充电电流逐渐降低,当电池的充电电路失去控制,会使电池压超过额定电压后继续恒流充电,此时会导致电池电压继续上升,电池的化学副反应将会加剧,造成电池损坏等安全问题;当电池加入过充保护功能时,实时电压超过额定电压时,IC首先会发出告警,提醒切断电流,如上升到一定电压,IC将会发出信号,强制断开充电电路,并且控制电池对外进行放电。

放电保护原理也类似,当电池电压降低至告警值,保护电路会发出信号提醒电量过低,当放电至限制电压时,保护电路将发出信号使电路切断,保证电池电压不再降低,由于保护电路也是由电池进行供电的,因此保护电路需设计低功耗模式,供电池电量过低时使用。

4.2、过流保护

由于电池的化学特性,电池放电电流强度最大不能超过2C,当超过此电流值时将会导致电池永久性损坏或者出现安全问题。下图是BMS电流采集原理图。为了保证信号的精度,传感器的输出信号一般都为电压信号,控制IC会对传感器信号进行处理。当电路中的电流达到设置值时,IC会输出一个开关信号,切断输出回路,起到保护电池的作用。

poYBAGSefaOAU3N6AACT4v7pmYA605.png

图14磁通门电流传感器在BMS保护的应用

4.3、温度保护

电池组热管理是BMS的重要功能之一,其作用是使电池组能保持在合适的温度下工作,充分发挥电池组最佳工作状态。调整策略包括冷却、加热及温度均衡等。冷却和加热是针对外部环境温度对电池可能造成的影响来进行相应的调整,温度均衡则是减少电池组内部的温度差异,防止部分电池过热造成寿命快速衰减。

汽车动力电池的冷却模式主要分为风冷、液冷和直冷三大类。风冷是利用自然风或者车内制冷风流经电池表面达到换热冷却的效果;液冷是利用专用的冷却液管路来加热或者冷却动力电池,目前这种方式是主流的方式,能同时起到冷却跟加热的作用;直冷系统则是使用制冷剂对动力电池进行冷却。

5、电池信息管理

BMS对电池参数、告警,都需要传输给对应的处理器,进行显示或者储存。使用在电动汽车上的传输方式主要为CAN(Controller Area Network,控制器局域网总线技术),主要用于汽车上各种传感器数据的传递。

Magtron采用磁通门原理打造高性价比、高精度、低零飘、高采集频率的电流传感器CSM系列,可用于电动汽车BMS系统。由公司自主研发的SoC芯片也可以为客户提供专有的技术解决方案,满足各项车规标准,基于市场实时的最新需求,不断升级完善,致力于解决工业、电动汽车、储能行业等各项电流、漏电流采集问题,为各行业电力设备保驾护航。

pYYBAGSefbaADf6WAAGDTA2DCk0192.png

参考文献:

[1].李沂洹.《锂离子电池荷电状态与健康状态估计方法》

[2].朱永康.《BMS中传感器的应用与技术发展趋势》

[3].倪红军.《电池管理系统电压采样电路的设计与研究》

[4].GB/T 38661-2020.《电动汽车用电池管理系统技术条件》

[5].GB/T27930.《电动汽车非车载传导式充电机与电池管理系统之间的通讯协议》

[6].李林琳.《锂电池管理系统的研究与设计》

[7].董艳艳.《纯电动汽车动力电池及管理系统设计》


关键字:电动汽车  BMS  能量密度 引用地址:浅析电动汽车BMS的功能实现

上一篇:HCET-T系列大电流过热过载保护器应用
下一篇:简述新能源汽车随车充电枪(IC-CPD)的关键元器件及应用

推荐阅读最新更新时间:2024-11-09 10:31

ZESTRON受邀做客IPC“可靠性之路”系列讲座
6月6日,Helmut Schweigart博士受邀参加IPC“可靠性之路”系列讲座之 《高压-电动汽车电子硬件可靠性》网络研讨会 。IPC“可靠性之路”系列讲座旨在将行业领导者聚集在一起,讨论实现新兴电动汽车技术的可靠性障碍。Helmut博士与来自Danfoss-Semikron的Michael Schleicher和来自Reliability Assessment Solutions Inc.的Bob Neves一同讨论与高压系统相关的基本主题,包括高压绝缘、腐蚀、失效模式和可靠性测试等。 会上,Helmut博士介绍了他如何看待更高电压带来的挑战,讲解了在高压环境中由ECM(电化学迁移)、漏电流引起的损坏机制发生的更加频繁
[汽车电子]
电动汽车的新的支撑:电池包热管理技术
近年来,随着全球气候变化和环境保护的日益重视,新能源汽车成为了汽车行业的新的发展方向。其中,电动汽车作为新能源汽车的代表,受到了越来越多的关注和支持。在电动汽车的发展过程中,有一项创新科技备受瞩目,那就是“电池包热管理技术”。 电池包是电动汽车的核心部件之一,也是电动汽车最为昂贵和容易出现故障的部件之一。电池包中的电池单体在工作过程中会产生大量的热量,如果不能及时有效地散热,就会导致电池温度过高,进而影响电池寿命和性能。此外,电池过热还可能引发火灾等安全事故。因此,电池包热管理技术对于电动汽车的安全性、稳定性和性能至关新的。 电池包热管理技术主要包括以下几个方面: 散热系统:散热系统是电池包热管理技术的核心。通过散热系统,电池
[嵌入式]
Melexis发布新款电机驱动芯片,显著提高电动汽车机电热管理性能
2023年6月30日,比利时泰森德洛—— 全球微电子工程公司Melexis今日宣布,Melexis最新推出电机驱动芯片MLX81334,可大幅优化电动汽车热力阀(精准的电池温度控制)和膨胀阀(热泵制冷循环),显著增加电动汽车续航里程 。MLX81334具有扩展内存且支持OTA(空中下载技术),进一步完善迈来芯的嵌入式电机驱动芯片产品组合,可实现高级软件功能。 基于LIN的电机驱动芯片MLX81334额定电流为1A,可部署在机电热管理系统中。这款单芯片器件可高效驱动小型直流电机、直流无刷电机或步进电机。每颗芯片都配备一个嵌入式微控制器(含16位应用处理器和独立通信处理器)、四个FET半桥驱动器以及数据转换电路和LIN或串行
[工业控制]
Melexis发布新款电机驱动芯片,显著提高<font color='red'>电动汽车</font>机电热管理性能
电动汽车充电速度太慢?原来是这个原因!
众所周知,如今阻碍纯电动汽车发展的最大瓶颈有两个,一个是电池的功率密度,另外一个就是充电速度了。前者影响一款电动车的制造成本和续航里程,而后者更是直接限制了纯电动汽车场景使用的便利性。但是为什么如今的电动车要充满电动辄就要一两个小时呢?一台电动车的充电速度到底受什么限制呢?今天我们就简单给大家讲讲这个问题。 电池的充电速度受什么限制? 在讨论充电速度的时候,电池本身的承受能力绝对是最无法绕过的一个因素。无论外围的充电设备有多牛、功率有多大、充电能力有多强,如果电池本身在能够接受的充电能力方面有短板,那么充电速度肯定就快不起来。加上电池容量又比较大的话,自然充电时间就长了。 如果你高中学过电化学方面的知识的话,就会了解电池充
[嵌入式]
<font color='red'>电动汽车</font>充电速度太慢?原来是这个原因!
推动电气化交通的未来
如果您曾在路上看到过电动汽车或混合动力汽车,或者您自己就拥有一辆,可以说您亲眼见证了交通运输行业走向电气化的变革。但您可能没有看到的另一场变革是汽车如何管理电池充电和用电,如何连接和通过使用人工智能及机器学习的方式使出行更智能、更安全,以及那些将重新定义我们如何安全使用和维护汽车的创新技术。 交通电气化是未来的趋势,并且从许多方面来说已经成为现实,就让我们对这场变革背后的关键创新技术一探究竟。 电气化未来已经初具雏形 过去,可能还有人在质疑全球电气化转型,但去年电动汽车销量取得的增长令人惊叹,足以打消任何质疑。 2021年,全球电动汽车(EV)的销售量达到675万辆,相比2020年增加了108%,其中包括乘用
[汽车电子]
推动电气化交通的未来
新能源电动汽车高压安全系统分析及优化方案
  0 引言   近年来,能源危机和环境污染日趋严重,这与汽车工业的飞速发展有着密切的联系,当前发展高效、节能、零排放的新能源电动汽车已成为汽车工业发展的必然趋势 。这就对新能源电动汽车提出了越来越高的要求。不仅要求其环保节能,而且其安全性一定要得到充分的保证 。   电动汽车高压安全一直是人们所关注的重点问题,当车辆发生绝缘或者其他漏电风险时,动力电池会快速切断高压继电器,防止触电事故发生。但即使高压继电器断开,由于电机控制器母线电容的存在,使得母线上还残存一定电量。目前市场上在售的新能源主要车型大都是高压系统,额定电压大都达到300 V或以上,最高电压基本在400 V以上。而像比亚迪部分车型电压甚至达到了600多伏。电
[嵌入式]
新能源<font color='red'>电动汽车</font>高压安全系统分析及优化方案
电动汽车和混动汽车DC-DC转换器的创新设计与测试方法
是德科技产品营销经理Brian Whitaker 预计到 2028 年,全球汽车 DC-DC 转换器市场规模将达到187亿美元,年复合增长率为10%。 DC-DC 转换器是汽车的重要组成部分,它可以通过电压转换为各种车载系统供电,例如日益复杂的车载信息娱乐系统、使用高级驾驶辅助系统(ADAS)实现的增强安全功能等。 包括纯电动汽车和混合动力汽车(HEV)在内的电动汽车(EV)的日益普及也带动了整个市场对 DC-DC 转换器的需求。 下面, 本文将介绍一些有助于开发更高效 DC-DC 转换器的行业趋势和技术。 混合动力汽车和电动汽车有多种架构变化。图 1和图2显示的是这些架构的简化框图。大容量电池提供的高压(
[汽车电子]
<font color='red'>电动汽车</font>和混动汽车DC-DC转换器的创新设计与测试方法
电动汽车冷却系统和压力传感器的作用
电动汽车吸引买家的原因有很多:与汽油燃料汽车相比,它们产生的排放量更少,运营成本显着降低,并且长期前景更好。 然而,让更多人改用电动汽车的最大挑战之一长期以来一直是他们一次充电可以行驶的有限范围。然而,这个障碍正在稳步被克服。 电池技术的逐步改进正在兴起,电动汽车的最大续航里程随着每一次进步而延长,使拥有电动汽车成为下一代驾驶员更可行的选择。 电动汽车冷却系统的重要性 然而,提高电池容量的尝试可能会带来某些挑战。 主要问题与冷却有关。 电池在充电和放电时会产生热量。 因此,电池储存的能量越多,充电或放电的速度越快,它产生的热量就越多。 纯电动车辆配备了冷却系统,可在车辆的电力电子设备和电池组中保持特定的温度限制。 冷却系统的主
[嵌入式]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件

 
EEWorld订阅号

 
EEWorld服务号

 
汽车开发圈

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved