雷达液位计测量原理就像雷达探测一样,靠雷达液位计发射的电磁波反射回来,利用多普达效应计算。了解雷达液位计测量原理十分重要。本文,世界泵阀网为大家介绍雷达液位计测量原理,以供学习参考。
雷达液位计的测量原理
雷达液位计采用发射—反射—接收的工作模式。雷达液位计的天线发射出电磁波,这些波经被测对象表面反射后,再被天线接收,电磁波从发射到接收的时间与到液面的距离成正比,关系式如下:
D=CT/2
式中 D——雷达液位计到液面的距离
C——光速
T——电磁波运行时间
雷达液位计记录脉冲波经历的时间,而电磁波的传输速度为常数,则可算出液面到雷达天线的距离,从而知道液面的液位。
在实际运用中,雷达液位计有两种方式即调频连续波式和脉冲波式。采用调频连续波技术的液位计,功耗大,须采用四线制,电子电路复杂。而采用雷达脉冲波技术的液位计,功耗低,可用二线制的24V DC供电,容易实现本质安全,精确度高,适用范围更广。
VEGAPULS雷达液位计采用脉冲微波技术,其天线系统发射出频率为6.3GHz、持续时间为0.8ns的脉冲波束,接着暂停278ns,在脉冲发射暂停期间,天线系统将作为接收器,接收反射波,同时进行回波图像数据处理,给出指示和电信号。
2. 雷达液位计的特点
(1)雷达液位计采用一体化设计,无可动部件,不存在机械磨损,使用寿命长。
(2)雷达液位计测量时发出的电磁波能够穿过真空,不需要传输媒介,具有不受大气、蒸气、槽内挥发雾影响的特点,能用于挥发的介质如粗苯的液位测量。
(3)雷达液位计几乎能用于所有液体的液位测量。电磁波在液位表面反射时,信号会衰减,当信号衰减过小时,会导致雷达液位计无法测到足够的电磁波信号。导电介质能很好地反射电磁波,对VEGAPULS雷达液位计,甚至微导电的物质也能够反射足够的电磁波。介电常数大于1.5的非导电介质(空气的介电常数为1.0)也能够保证足够的反射波,介电常数越大,反射信号越强。在实际应用中,几乎所有的介质都能反射足够的反射波。
(4)采用非接触式测量,不受槽内液体的密度、浓度等物理特性的影响。
(5)测量范围大,最大的测量范围可达0~35m,可用于高温、高压的液位测量。
(6)参数设定方便,可用液位计上的简易操作键进行设定,也可用HART协议的手操器或装有VEGA Visual Operating软件的 PC机在远程或直接接在液位计的通信端进行设定,十分方便。
(7)天线等关键部件采用高质量的材料,抗腐蚀能力强,能适应腐蚀性很强的环境。
(8)功能丰富,具有虚假波的学习功能。输入液面的实际液位,软件能自动地标识出液面到天线的虚假回波,排除这些波的干扰。
关键字:雷达液位计 测量原理 特点说明
引用地址:
雷达液位计测量原理与特点说明
推荐阅读最新更新时间:2024-03-30 23:32
频谱分析基本原理:快速完成高效率测量
所有电子设计工程师和科学家都曾执行过电气讯号分析,简称讯号分析。透过这项基本量测,他们可洞察讯号细节并获得重要的讯号特性资讯。不过讯号分析的成效,主要取决于量测仪器的效能,而频谱分析仪与向量讯号分析仪是两种最常用于电气讯号分析的测试设备。 频谱分析仪是广为使用的多用途量测工具,可量测输出讯号相较于频率的大小(magnitude),以便瞭解已知和未知讯号的频谱功率。向量讯号分析仪则可同时量测分析仪中频(IF)频宽之输出讯号的大小与相位,并经常用来对已知讯号执行通道内量测,例如误差向量幅度(EVM)、域码功率,及频谱平坦度。过去,频谱分析仪与向量讯号分析仪是两种各自独立的仪器,但随着量测技术不断突飞勐进,量测设备商现在已可将
[测试测量]
氧化锆氧量分析仪的测量原理
氧化锆氧量分析仪(又称氧化锆氧分析仪、氧化锆分析仪、氧化锆氧量计、氧化锆氧量表),主要用于丈量焚烧过程中烟气的含氧浓度,相同也适用于非焚烧气体氧浓度丈量。在传感器内温度稳定的电化学电池(氧浓差电池,也简称锆头)发生一个毫伏电势,这个电势直接反应出烟气中含氧浓度值。氧传感器的关键部件是氧化锆,在氧化锆元件的表里两边涂上多孔性铂电极制成氧浓度差电池。它坐落传感器的顶端。为了使电池坚持额外的工作温度,在传感器中设置了加热器。用氧分析仪内的温度操控器操控氧化锆温度稳定。 氧化锆氧量分析仪的构成是由氧传感器(又称氧探头、氧检测器)、氧分析仪(又称变送器、变送单元、转换器、分析仪)以及它们之间的连接;电缆等构成。 氧传感器; 传感器装置由不
[测试测量]
电压表测量电压的原理是什么(电压表工作原理)
电压表是测量电压的一种仪器。由永磁体、线圈等构成。电压表是个相当大的电阻器,理想的认为是断路。初中阶段实验室常用的电压表量程为0~3V和0~15V。本文主要介绍电压表的工作原理以及电压表的技术参数、结构以及分类等方面的内容,一起来了解一下。 电压表技术参数 1、频响范围10Hz—10MHz 基本精度±2% 2、输入电阻,电容,过载电压1mV—300mV:≥8MΩ≤40pF≤100V300mV—300V≥8MΩ≤20pF≤600V 3、直流输出电压-1V(逢10量程) 4、一般技术指标 5、工作温度,湿度0℃—40℃≤90%RH 6、电源要求198V—242VAC475Hz—52.5Hz 7、
[测试测量]
激光测速仪测量原理及特点
激光测速仪测量原理 ZLS-C50传感器系统是基于一种可靠的空间滤波方法原理,此工作方法是通过观察穿过光栅的移动物体来实现。运动影像的重合和光栅结构导致探测器输出信号的频率被测物的移动速度相匹配。 激光测速仪的特点: 1、由于该激光光束基本为射线,估测速距离相对于雷达测速有效距离远,可测1000M外; 2、测速精度高,误差 1公里; 3、鉴于激光测速的原理,激光光束必须要瞄准垂直与激光光束的平面反射点,又由于被测车辆距离太远、且处于移动状态,或者车体平面不大,而导致执勤警员的工作强度很大、很易疲劳。目前美国激光技术公司已经生产出带连续自动测速功能的激光测速仪,专门用于解决这一问题。东莞市交警支队东城大队使用这种改进后的测速仪抓
[测试测量]
超声波液位计与雷达液位计的特点及应用
同为测量液位的物位测量仪表,超声波液位计和雷达液位计有什么特点?它们的应用情况又是怎样的呢?一般来讲,超声波液位计与雷达液位计的特点及应用有如下不同。 一、超声波液位计与雷达液位计的特点 1、超声波液位计 超声波技术作为近几年来发展迅速的一种非接触式测量方法,其在液位测量领域有着极其广泛的应用。 采用超声波技术进行液位测量的超声波液位计,其所发射的超声波属于机械波,在液体、固体中衰减很小,因而穿透能力强,一旦碰到障碍物或液面就会有显著的反射。 超声波液位计具有频率高、波长短、绕射现象小,方向性好、穿透力强、能够成为射线而定向传播的特点。 2、雷达液位计 雷达液位计所发射的电磁波,穿透力强,且传播
[测试测量]
液位计的分类、测量原理及优缺点
液位计的分类、测量原理及优缺点 一、 接触式测量 接触式测量是从钢带浮子液位计为开端,以各种方式精确测量浮子距离而演化到各种现代化仪表如伺服式、磁致伸缩式等等 热电技术联盟,o5h!q1J6x 钢带浮子式:最早期的液位计,现今都面临着更新换代 工作原理 浮子受浮力浮在介质表面,通过变速齿轮到有刻度的钢带上读出液位值,液位上升或下降破了力平衡后,浮子也跟随上升下降,带动钢带运行。理论精度在2-3mm左右,电厂锅炉、汽轮机、电气、热控、水处理等热电行业技术免费交流平台! 安装复杂,可靠性较低,由于机械部件多,很容易发生钢带卡死不动的情况。 |电 光纤式即将钢带液位通过光码盘读出实现数字化。
[模拟电子]
溶解氧在线分析仪的测量原理
膜电极法 膜电极法是一个目前最常用的一种溶解氧连续测定方法,膜电极又名Clark氧电极,这种电极利用膜可渗透氧但不能渗透水和有机及无机溶质的原理,保护电极不与这类还原物质紧密接触,从而使 传感器 的灵敏度不受影响。这种半透膜通常采用聚四氟乙烯纤维、聚乙烯等材料组成。 膜电极法溶解氧传感器是由金电极(阴极)和银电极(阳极)及氯化钾或氢氧化钾电解液组成,氧通过膜扩散进入电解液与金电极和银电极构成测量回路。当给溶解氧分析仪电极加上0.6~0.8V的极化电压时,氧通过膜扩散,阴极释放电子,阳极接受电子,产生电流,整个反应过程为: 阳极反应:4Ag 4Cl-→4AgCl 4e- 阴极反应:O2 2H2O 4e-→4O
[测试测量]
基于J2ME的脉搏波测量系统设计原理
在我国传统医学中,脉诊在中医诊断中占有重要地位,脉诊就是从脉搏信号中感知人体的病理信息。随着现代科技的发展,特别是信号检测处理技术及计算机技术等信息技术的发展,人们对脉搏信号的检测分析进行了很多有意义的研究。脉搏波可看成主要是由心脏的收缩与舒张以及血液在沿血管的流动过程中所遇到的各种阻力相互作用而形成的,其中包含了丰富的人体内各器官的生理和病理信息,具有干扰强、频率低、采集困难等特点。准确地检测脉搏信号对于预防心血管系统疾病的发生以及对诊治过程给予科学合理的指导、提高人们身心健康水平、提高人民生活质量均具有重要的科学和社会意义。 传统检测血氧脉搏信号普遍采用大型医疗设备,这类设备一般由传感器有创采集信号,有线传输显示在仪器面板上,
[单片机]