目前,光伏发电装置往往因为充放电不合理,造成控制器故障较多、蓄电池使用寿命短、维修麻烦,影响其正常使用,所以有必要设计一款结构简单、性能优良的太阳能充电控制器。
1 光伏发电充电控制系统
光伏发电充电控制系统主要由太阳能电池板、蓄电池和控制器组成,其系统框图如图1所示。为了提高控制器的可靠性、延长蓄电池的使用寿命以及提高允电速度,本设计特别采用了UC3906芯片进行充电控制。并且在设计中加入了Buck-Boost变换器,调节太阳能电池的输出,提高了整个系统的效率。
2 UC3906的结构及工作原理
UC3906是美周TI公司专门针对铅酸电池充电设计的。内部的逻辑电路提供三种充电状态,并对温度进行了精确的跟踪补偿,可以发挥电池的最大容量,延长电池的使用寿命。
图2为UC3906的内部结构图,其内部为混合电路,既有模拟电路,又有数字电路。模拟电路包括限流单元、电流检测单元、带温度补偿的参考电压单元,低电压检测单元等。数字电路主要包括两个RS触发器。该芯片内含独立的电压控制回路和限流放大器,它可控制芯片内的驱动器。驱动器提供的输出电流达25 mA,可直接驱动外部串联的调整管,从而调整充电器的输出电压和电流,电只三和电流检测比较器检测蓄电池的充电状态,并控制状态逻辑电路的输入信号。
UC3906一个非常重要的特性就是其内部的精确基准电压随环境温度的变化规律与铅酸电池电压的温度特性完全一致。同时,该芯片只需1.7 mA的输入电流就可以工作,因而可减小芯片的功耗,实现对工作环境温度的准确检测,保证电池既充足电又不会严重过充电。除此之外,UC3906芯片还包括一个输入欠压检测电路以对充电周期进行初始化,并可驱动一个逻辑输出。
3 电路设计
3.1 Buck-Boost变换电路的设计
Buck—Boost变换电路如图3所示。为使晶体管工作在开关状态,在其基极与发射极之间施加周期一定、高电平存在时间可调的驱动脉冲信号。在一个周期中晶体管导通时间T册与周期Ts之比称为占空比,用D表示。
以连续导电模式为例分析其工作原理:在晶体管导通,二极管截止期间,电源电压向电感输入能量,靠滤波电容维持输jJj电压基本不变;
在晶体M=Uo/uin=D/(1一D) (1)
由此看出Buck-Boost变换器的稳态电压变比既可小于1(D<0.5时),也可以大于1(D>O.5时),所以Buck-Boost变换器也称为升降压变换器。其优点是电路简单,电压变比可由零到无穷大变化,也就是说既可升压又可降压。因此,当太阳能输出电压发生变化时,只要适当调节Buck-Boost的占空比就可保证蓄电池输入电压的稳定。
3.2 UC3906的外围充电电路的设计
根据前面介绍的UC3906的工作原理,以12 V25 AH铅酸蓄电池为例,设计出的UC3906的外围电路如图4。其中,输入电压Ui。=18 V,过充电压Uoc=15 V,浮充电压UF=14.5 V,过充转换电压U12=14.25 V,浮充转换电压U13=11.7 V,最大充电电流Imax=2.5 A,过充终止电流Ioc=0.25 A。
由于充电器始终接在蓄电池上,为防止蓄电池电流倒流入充电器,在串联调整管与输出端之间串入一只二极管。同时,为了避免输入电源中断后,蓄电池通过分压电阻R,、R2、R3放电,使R3通过电源指示晶体管(脚7)接地。
18 V输入电压加入后,Q1导通,开始恒流充电,充电电流为2.5 A,电池电压逐渐升高。当电池电压达到过充电压Uoc的95%(即14.25 V)时,电池转入过充电状态,充电电压维持在过充电电压,充电电流开始下降。当充电电流降到过充电终止电流(Ioct)时,UC3906的脚10输出高电平,比较器LM339输出低电平,蓄电池自动转入浮充状态。同时充足电指示发光管发光,指示蓄电池已充满。
4 结语
本设计最大的特点就是在传统的控制器的基础上加入了Buck—Boost变换器,并且使用了专门的充电控制芯片UC3906。整个充电器体积小,结构简单,具有良好的充电管理和维护功能。
上一篇:基于升压型DC/DC控制器设计的大电流输出电路解决方案
下一篇:电动车控制器短路保护时间的计算方法
推荐阅读最新更新时间:2023-10-18 15:35
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- Vishay推出适用于恶劣环境的紧凑型密封式SMD微调电阻器
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- Allegro MicroSystems 在 2024 年德国慕尼黑电子展上推出先进的磁性和电感式位置感测解决方案
- 左手车钥匙,右手活体检测雷达,UWB上车势在必行!
- 狂飙十年,国产CIS挤上牌桌
- 神盾短刀电池+雷神EM-i超级电混,吉利新能源甩出了两张“王炸”
- 浅谈功能安全之故障(fault),错误(error),失效(failure)
- 智能汽车2.0周期,这几大核心产业链迎来重大机会!
- 美日研发新型电池,宁德时代面临挑战?中国新能源电池产业如何应对?
- Rambus推出业界首款HBM 4控制器IP:背后有哪些技术细节?
- 村田推出高精度汽车用6轴惯性传感器
- 福特获得预充电报警专利 有助于节约成本和应对紧急情况
- 有奖直播:现代电动工具的设计挑战与英飞凌解决之道
- Murata旗舰店1周年淘宝直播
- 【颁奖礼】摸黑抢楼赢大礼!
- 直播已结束|浅谈Microchip的FPGA产品与智能嵌入式视觉解决方案
- 畅游安富利人工智能云会展,挑战60天打卡学习养成记!冲击华为Mate40 Pro、Apple iPad Air等豪礼啦!
- 【评论有礼】大话CC2650,从资料到例程、从应用到生态全方位讲解!
- TI DLP 有奖创意征集
- 学知识,赢好礼|泰克半导体材料与器件测试技术电源特性篇!
- 听技术大咖侃谈Type-C 测量那些事儿—— 即刻获取能量,轻松闯关赢礼品!
- 改变你对万用表的看法!福禄克首款热成像万用表Fluke-279FC功能畅想大征集!