机房供电选型中 一个不可忽视的UPS指标

最新更新时间:2012-07-17来源: 21ic关键字:机房供电  UPS  指标 手机看文章 扫描二维码
随时随地手机看文章

在UPS中有一个称为“负载功率因数”的指标,这个指标是指明这台机器向负载提供有功功率和无功功率的能力。由于有的将这个指标误解成是UPS的“输出功率因数”,这就出现了很大的误差:就是这个功率因数的属性问题。负载功率因数是指在UPS带负载时在UPS输出端测出的实际功率因数,如果这个功率因数和负载的输入功率因数相等,该负载就可以得到UPS全部的的额定标称功率,称为完全匹配。否则该UPS就必须降额使用。这里的最大不同就是UPS带不同负载时,测出的功率因数也就不同,为什么?因为测出的这个功率因数是负载的而不是其它。如果把它看成是UPS输出端的,即属于UPS的,那么不论带什么负载,功率因数值应该是不变的,然而实际中并不是这样。这就导致了一个误区,并且在实际中产生了不良影响。

一、电源的功率因数概念

在电子领域的负载有三个基本品种:电阻、电容和电感。电阻是消耗功率的器件,电容和电感是储存功率的器件。日常所用的交流电在纯电阻负载上的电压和电流是同频率同相位的,即相位差q= 0°,

功率因数的定义是:

在电阻负载上的有功功率就是视在功率,即二者相等,所以功率因数F=1。而在纯电容和纯电感负载上的电流和电压相位差90°,所以功率因数F=cosq = cos90°=0,即在纯电容和纯电感负载上的有功功率为零,全部是无功功率。

从这里可以看出一个问题,同样是一个电源,对于不同性质的负载,其输出功率的大小和性质也不同,因此可以说负载的性质决定着电源的输出。换言之,电源的输出不取决于电源的本身,而是由负载的需要决定。就像一座水塔的供水水流取决于水龙头的开启程度一样。

从上面的讨论可以看出,功率因数是表征负载性质和大小的一个参数。而且一般说一个负载只有一种性质,就像一个人只有一个身份证号码一样。这种性质的确定是从负载的输入端看进去,称为负载的输入功率因数。一个负载电路设计完成了,它的输入功率因数也就定了。比如UPS作为前面市电或发电机的负载而言,六脉冲整流输入的UPS,其输入功率因数就是0.8左右,不论前面是市电电网还是发电机,假如该UPS要求输入100kVA的视在功率,就需要向前面的电源索取80kW的有功功率和60kvar的无功功率。

二、UPS负载功率因数的含义

现代UPS总不能一对一地制造,要事先根据当前用电器的形式和规模预先制造出一批或几批不同功率因数和功率规格的机器,以备市场现货销售。预先制造出一批或几批UPS的根据就是负载功率因数的大小和容量规格。当UPS的负载功率因数与负载的输入功率因数相等时,就称为完全匹配,UPS就可向负载输出全部功率。即37码的鞋穿在37码的脚上就正合适,否则就感到不舒服,那么这双鞋的舒适度就打了折扣。UPS也是这样,遇到不匹配负载时,就必须降额使用。

关键字:机房供电  UPS  指标 编辑:探路者 引用地址:机房供电选型中 一个不可忽视的UPS指标

上一篇:基于ispPAC10在增益设置方面的应用
下一篇:手持式终端设备中电源监测技术研究与实现

推荐阅读最新更新时间:2023-10-17 14:57

广播电视系统UPS电源的维护
目前,广电行业各类机房里使用着大量的计算机、实时数据存储设备及其它电子设备,良好、持续不断的 电源 是系统工作的必要条件。 当外电突然发生中断,且没有其它后备电源维持供电时,计算机等电子设备由于没有电力供应可能产生硬件损坏、系统中断运行、数据丢失甚至系统崩溃等后果。这对于某些实时系统(收费系统、播出系统、监测监控系统)除经济上的损失外,还会造成不可挽回的播出事故甚至是信息安全上的重大损失。 (1)在广电监测部门,监测和检测到的数据之重要性是不言而喻的,一旦造成某一重要时段的重要数据丢失或损坏,将会给后续处理(包括连锁处理和数据分析)造成困难,以至造成不良影响。 (2)有偿服务的电视节目播出系统及其即时收费系统,有别于无偿服务的
[电源管理]
使用UPS有哪些注意事项
  1)UPS的使用环境应注意通风良好,利于散热。并保持环境的清洁。   2) UPS输出插座应明确标识,勿使加入无关负载或短路。   3)切勿带感性负载,如点钞机、日光灯、空调,以免造成损坏。   4) 若用户在市电停电期间使用发电机供电,应保证发电机功率大于两倍UPS额定功率。必须在发电机启动稳定后才能接入UPS。   5)开启UPS负载时,一般遵循先大后小的原则。   6)UPS输出负载控制在60%左右为最佳,可靠性最好。
[电源管理]
一种改善微波模块增益指标温度特性的新方法
    目前,大部分微波模块的的工作温度范围很大,有时达-50~+70℃,对于高集成微波模块,其增益或插损指标在全温段变化很大,甚至超过±3dB。     对于增益随温度变化不大的模块可选用无源温变衰减器来补偿,这种温变衰减器尺寸小,可靠性高。缺点是衰减器温度系数(Temperatu re Coefficient of Attenuation,TCA)大的衰减器工作频率往往局限在低频段,且其常温衰减量偏大。例如:EMC公司TVA系列的温变衰减器工作频率DC~6GHz,TCA为-0.70 dB/10℃的衰减器在-50~+70℃温度范围内插损变化有8.4 dB,但其常温+25℃时插损达10 dB。这对于增益和噪声系数指标敏感的微波模块,
[嵌入式]
基于ARM单片机 LPC2214的在线式UPS硬件设计
1 概 述 目前UPS主要发展方向有两个:一是新的功能不断加强,例如增加远程监视、自动诊断、识别、事件记录、故障警告等功能;二是自身效率的提高。采用高效率的IC芯片和新的制造工艺,使空载功耗不断地降低,功率密度进一步提高。紧凑密集的空间设计给小型电子设备的应用带来了新的解决方案。 将功能强大的嵌入式微处理器(本文选用LPC2214)系统引入UPS,可以增强UPS的功能,使其具有网络化、智能化的特性,满足许多无人职守基站的用电要求。用数字控制代替模拟控制,可以消除温漂、老化等模拟器件存在的问题;抗干扰能力强,有利于参数整定和调节;通用性强,便于通过改变程序软件方便地调整方案和实现多种新型控制策略;同时高度集成的数
[单片机]
效能与功耗验证缺乏指标 IC设计仍多凭经验判断
    日前由iPhone 6s引发的“芯片门”事件,让人注意到半导体芯片即使功能规格相同,却可能因设计与制程差异,而有不同的效能与功率表现。半导体产业有其定义的制程指标,对于功能性的验证亦相当先进,但有关功率耗电、效能以及其他系统层方面的验证却尚无明确的分析指标。   据Semiconductor Engineering网站报导,目前之所以缺乏针对芯片功耗与效能指标的定义,主因在于无法用简单的通过或不通过的概念进行检验。   以功率来说,其实包含许多不同层级需求,例如执行特定工作的整体耗能、尖峰功率、平均输出功率与功率密度等等,若再加上热冲击,将耗费更多时间。效能也是一样,在某些应用上,持续性或许比最大处理量更重要
[手机便携]
UPS电源智能监控系统的设计
  引言   UPS供电系统是电力、通信、银行等行业的必备 电源 ,从产生到现在已有几十年的发展历程,在技术不断发展和改进的过程中,其保护功能也在不断地发生变化。UPS根据主机内逆变器的工作状态可分为:后备式、在线式及在线互动式。他们的作用是对市电进行滤波、稳压调整,以便向负载提供更为稳定的电压,同时,通过充电器把电能转变为化学能储存在蓄电池内,一旦电力中断、电网电压或电网频率超出UPS的输入范围,可在极短的时间内开启自身的储备电源,向负载供电。   本文所设计的UPS智能监控系统具备以下环节和功能:能在各种复杂的电网环境下运行;在运行中不会对市电产生附加的干扰;输出电性能指标应该是全面的、高质量的,能满足负载的各项要求;UPS
[电源管理]
<font color='red'>UPS</font>电源智能监控系统的设计
基于控制器构成大功率并联型UPS同步控制方案
1.引言 随着信息处理技术的不断发展,尤其是计算机的广泛应用和Internet的迅猛发展,现代信息设备对不间断电源(UPS)供电系统的可靠性要求越来越高,不间断电源(UPS)的可靠性越来越备受关注,不间断电源(UPS)并联供电系统逐步成为首位;如何保证UPS并联系统在电网恶劣的条件稳定、可靠运行是UPS厂家需要考虑的问题。本文介绍一种基于TI公司的 TMS320C240 DSP控制器构成的大功率并联型UPS同步控制方案。与电网的同步、并联系统中各台UPS间的同步,成为并联UPS系统控制的关键。UPS并联系统中的核心部分是精度很高的锁相环,模拟锁相环是一门成熟的技术,以它独特的优良性能在许多领域得到了广泛地应用。但随
[嵌入式]
基于控制器构成大功率并联型<font color='red'>UPS</font>同步控制方案
基于DSP控制的全数字UPS逆变器设计
1 引言 随着信息处理技术的不断发展,尤其是计算机的广泛应用和Internet的迅猛发展,供电系统的可靠性要求越来越高,因此对不间断电源(UPS)技术指标的要求也越来越高。UPS的核心部分是一个恒频恒压逆变器,由于传统模拟控制需要使用大量的分立元器件,老化和温漂严重影响了系统的长期稳定性。基于DSP的数字控制技术能大大改善产品的一致性,同时增加了控制的柔性,提高了整个系统的稳定性和可靠性 。本文主要提出了一种数字控制的UPS逆变器结构,详细论述了控制系统的参数设计。 2 系统结构 图1是本文提出的数字控制UPS逆变器的结构框图。主电路采用了全桥结构,控制电路是以TI公司的电机控制专用DSP芯片TMS320F240为核心的全数字控
[嵌入式]
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved