TI 提供的TPA6132A2,因为其100dB 的高信噪比,0.01%的低失真度,出色的消除POP 声的能力,以及极高的性价比,在手机等移动设备中,得到了广泛的应用。由于移动设备芯片的集成度的提高,越来越多的芯片组选择了单端的连接方式作为耳机通道的输出。
TPA6132A2 同时提供了差分,以及单端反相放大的连接方式。但由于一些应用,例如需要配合其他播放设备使用,对于输出的相位有严格的要求,因此需要以正向的单端放大器的连接方式连接TPA6132A2。
本文将讨论TPA6132A2 的正向单端放大器的连接方法,以及需要注意的事项。
1. TPA6132A2 简介
TPA6132A2 是TI 推出的DirectPath 系列的立体声耳机放大器,由于集成了Charge Pump,提供了负电源,因此能够输出参考地的无直流分量的输出波形,使得放大器不再需要大体积的输出隔直电容。
TPA6132A2 作为一个全差分输入的耳机放大器,提供了极高的共模抑制比以及电源抑制比,因此能够达到极低的噪声输出水平。对于单端的连接,可以简单的将INL+和 INR+接地,输入信号由INL-和INR-接入。此时TPA6132A2 构成了反相放大电路,输入的直流偏置为0V,直接由INL/R+供给,因此可以节省一对耦合电容并且由于播放中,耳机的左右声道互相参考,因此同时被反相的两个声道保持同向。所以在TPA6132A2 的手册中TPA6132A2 将反相放大电路作为了示例。而在实际的应用中存在一些场景,存在非独立参考的相位,此时声波在空间会存在一定的抵消现象,因此一些设计,即使是使用耳机也希望采用DAC 输出的原始相位。因此本文讨论并提供了正确的正相放大器的接法。
图一 TPA6132A2 单端反相放大器
2. TPA6132A2 正相放大器原理
A. TPA6132A2 内部原理
TPA6132 集成了放大电路的反馈网络,根据G0, G1 管脚的配置,会使能不同的反馈网络阻值,来得到不同的放大倍数。SGND 用于连接耳机左右声道地线所共用的FM 电感,用于消除电感阻抗上左右声道归地电流引起的窜扰。
图二 TPA6132A2 内部反馈网络构成
B. TPA6132A2 正相放大器连接方法
因为耳机对于放大器直流分量过于敏感,且HPVSS 并不完全对称与VBAT,因此需要引入直流反馈来减小输出的直流分量,因此需要将INL-和INR-通过一个直流反馈电容接地。而由于前端芯片输出一般都有较高的直流分量,因此需要在INL+和INR+端接入隔直电容。
图三 TPA6132A2 单端正相相放大器
由于正向输入脚和反相输入脚的阻抗均相等,因此隔直电容和直流反馈电容可以选择相同的容量,大小等于:
其中fc 为系统的转折频率,一般取值小于20Hz,而Rin 可参考下表中的阻值。
表一 不同增益下Rin 的阻值
3. 正相单端放大器使用注意事项
a. 输入电容和反馈电容的选择和噪声抑制
因为输入电容和反馈电容在低频的容抗会计入反馈网络,因此不匹配的电容会降低相应频段的共模抑制比,所以在实际应用中可以选择:
1. 精度高的电容作为输入及反馈电容,这样容抗能够极大的接近,减小对于共模抑制比的影响;
2. 容量更大的电容作为输入及反馈电容,这样即使两颗电容容量存在差异,但由于容抗相对于反馈电阻网络较低,因此也能减小对于共模抑制比的影响。
b. 直流反馈电容的接地点
由于移动式设备集成度高,因此很难规划严格的回地电流,所以在实际的布线中需要考虑归地电流对于电路的影响。一般选择前级芯片的模拟接地点作为直流反馈电容的接地点,因为输入信号以及反馈能够参考同样的地,因此地线上拾取的噪声能够被放大器共模抑制消除。
上一篇:NFC天线的ESD解决方案
下一篇:基于MPC5634的控制器多路AD采样的设计
推荐阅读最新更新时间:2023-10-12 22:48
Vishay线上图书馆
- 选型-汽车级表面贴装和通孔超快整流器
- 你知道吗?DC-LINK电容在高湿条件下具有高度稳定性
- microBUCK和microBRICK直流/直流稳压器解决方案
- SOP-4小型封装光伏MOSFET驱动器VOMDA1271
- 使用薄膜、大功率、背接触式电阻的优势
- SQJQ140E车规级N沟道40V MOSFET
- MathWorks 和 NXP 合作推出用于电池管理系统的 Model-Based Design Toolbox
- 意法半导体先进的电隔离栅极驱动器 STGAP3S为 IGBT 和 SiC MOSFET 提供灵活的保护功能
- 全新无隔膜固态锂电池技术问世:正负极距离小于0.000001米
- 东芝推出具有低导通电阻和高可靠性的适用于车载牵引逆变器的最新款1200 V SiC MOSFET
- 【“源”察秋毫系列】 下一代半导体氧化镓器件光电探测器应用与测试
- 采用自主设计封装,绝缘电阻显著提高!ROHM开发出更高电压xEV系统的SiC肖特基势垒二极管
- 艾迈斯欧司朗发布OSCONIQ® C 3030 LED:打造未来户外及体育场照明新标杆
- 氮化镓取代碳化硅?PI颠覆式1700V InnoMux2先来打个样
- 从隔离到三代半:一文看懂纳芯微的栅极驱动IC