研究人员致力于探索3D石墨烯作为下一代电子材料

最新更新时间:2017-05-05来源: EE Times 关键字:3D石墨烯  磁场  电荷 手机看文章 扫描二维码
随时随地手机看文章

莫斯科物理与技术研究所(Moscow Institute of Physics and Technology;MIPT)的研究人员正致力于探索石墨烯的三维(3D)形式,作为下一代电子材料。


MIPT的研究人员曾经因为石墨烯研究而在2010年获得诺贝尔奖(Nobel Prize)。Andre Geim和Konstantin Novoselov发现了德国物理学家Hermann Weyl曾经预言的“3D形式的石墨烯”,并称其为“威尔半金属”(Weyl Semimetal)。


3D石墨烯可望让其中的电子携带电荷,但不带质子——就像光子一样,因而使其成为最有希望在拓扑材料表面达到像超导体般电导率的新方法之一。


Geim和Novoselov利用拓扑场域理论,在Weyl半金属表面上表征出无质量但带电荷之Weyl粒子的行为,其结果并发表在《物理评论》(Physical Review)期刊中。


Weyl费米子(这种用语比粒子更精确,意味着它遵循统计规则并拥有半整体自旋)在Hermann Weyl终其一身努力寻找后(Hermann Weyl在1995年去世),终于在2015年被发现存在于目前已知的Weyl半金属微小晶体表面。接着,MIPT教授Zhanna Devizorova及博士候选人Zhanna Devizorova解开了预测在晶体表面费米弧(Fermi Arcs )(Weyl费米子散射)形状的拓扑等式。


1930年代的诺贝尔奖得主Igor Tamm预测了这些电子的表面状态,衍生出这些状态的第一个理论模型。这种Weyl半金属较目前的电子组件更快速也更节能,因此,MIPT的几位科学家现正积极寻找可为下一代电子组件(基于拓扑学的Weyl半金属)奠定基础的原理。


研究人员希望,Weyl半金属能够实现超快速电子学,其Weyl Fermions可以由电场和磁场控制。 


关键字:3D石墨烯  磁场  电荷 编辑:张依敏 引用地址:研究人员致力于探索3D石墨烯作为下一代电子材料

上一篇:应用Cadence Protium S1,晶晨半导体大幅缩短SoC软硬件集成时间
下一篇:由材料分析观点看英特尔14nm/14nm+演进

推荐阅读最新更新时间:2023-10-12 23:43

新型软体“机器人”可用磁场隔空操纵
美国麻省理工学院研究人员开发出一种3D打印的小型软体“机器人”,可被磁场操纵,有望应用于生物医药领域。 发表在最新一期《自然》杂志上的研究显示,这种“机器人”实际是一种形似雪花片的3D打印结构,完全伸展开最大直径约4厘米。在磁场操纵下,它能爬行、打滚、跳跃,能迅速收缩以抓住滚过的小球,还能裹住药片在桌面上移动。 麻省理工学院机械工程系教授赵选贺团队使用掺有磁性粒子的3D打印墨水,并在3D打印机喷嘴上安装电磁铁,在打印过程中控制磁性粒子的方向,制造出了这种可在外部磁场操纵下立刻发生精细变形的构造。 据介绍,这种用磁场操控的“机器人”不像一些电驱动的机器人那样需要高电压,而与使用水凝胶等材料制造的软体机器人相比,它的变形速度更快。 研
[机器人]
瑞萨采用动态电荷泵,突破MRAM写入瓶颈
随着磁阻随机存取存储器(MRAM)写入技术的新改进,瑞萨声称将改善物联网(IoT)应用的功耗,并进一步推动MRAM。 虽然目前行业中存在许多内存技术,但MRAM技术希望拥有独特的潜力,报告估计这项技术从现在到2026年将以25%的复合年增长率增长,到2026年达到62亿美元。 MRAM提供非易失性存储器、低功耗、对称和快速的读写速度,许多人认为它最终将取代静态随机存取存储器(SRAM)和动态随机存取存储器(DRAM)技术。 不同内存技术比较。图片来源:Synopsys 尽管MRAM技术有很多好处,但由于存在一些挑战,它的应用一直很缓慢,我们将在本文后面深入探讨。 然而,为了改善MRAM技术以增加其在低功耗空间
[单片机]
瑞萨采用动态<font color='red'>电荷</font>泵,突破MRAM写入瓶颈
基于电荷泵的多LED驱动器
CPLD(Complex Programmable Logic Device)是一种复杂的用户可编程逻辑器件,由于采用连续连接结构。这种结构易于预测延时,从而电路仿真更加准确。CPLD是标准的大规模集成电路产品,可用于各种数字逻辑系统的设计。近年来,由于采用先进的集成工艺和大批量生产,CPLD器件成本不断下降,集成密度、速度和性能大幅度提高,一个芯片就可以实现一个复杂的数字电路系统;再加上使用方便的开发工具,使用CPLD器件可以极大地缩短产品开发周期,给设计、修改带来很大方便 。本文以 ALTERA公司的MAX7000系列为例,实现MCS51单片机与PC104 ISA总线的并行通信。采用这种通信方式,数据传输准确、高速,在12 M
[电源管理]
基于<font color='red'>电荷</font>泵的多LED驱动器
磁场高速自动扫描技术在高速PCB设计中的应用
电磁兼容测试对即将进入市场的电子产品是非常重要的一项测试,但以往的测试只能得出能否通过的结果,不能提供更多有用信息。本文介绍利用高速自动扫描技术测量电磁辐射,检测PCB板上电磁场的变化情况,使工程技术人员在进行电磁兼容性标准测试前就能发现相关问题并及时予以纠正。       随着当今电子产品主频提高、布线密度增加以及大量BGA封装器件和高速逻辑器件的使用,设计人员不得不通过增加PCB板的层数来减少信号与信号间的相互影响。同时在大量便携式终端设备中,为了降低系统功耗必须采用多电平方案,而这些设备还有模拟或者RF电路,需要采用多种地,又必须使用电源平面和地平面分割的技术。因此PCB板上的信号之间存在大量辐射干扰,造成设备功能故障或者工作
[半导体设计/制造]
STP4CMP:带电荷泵四路LED驱动解决方案
ST公司的STP4CMP是基于电荷泵的四路LED驱动器,设计用于RGB照明或LCD显示器背光。支持正向电压高达成3.8V的LED,工作电压2.7V~5.5V,四路电流可单独编程,最大电流30mA,输出电流精度±7%,通路间电流匹配度在±4%内。主要用在手机显示器背光和RGB LED指示器驱动器。 STP4CMP是基于4通道LED驱动器(用于RGB照明或液晶显示背光)的电荷泵。 STP4CMP由电池供电,输入电压为2.7V~5.5V。该器件生成的稳压电流汇,具有很高的通道至通道的精确性,最多可驱动4个LED。它最高可支持3.8V的LED正向电压,每个通道的电流汇,可由4个独立的外部电阻设置。每个通道独立控制。 PWM控制可以直接用于4
[电源管理]
电荷泵锁相环的数字锁定检测电路应用分析
摘 要 电荷泵锁相环的锁定指示电路设计,常用的方法是在PFD 电路中通过检测经分频后的参考输入和本振反馈信号的相位误差来实现,当相位误差超过某个锁定检测窗口时,锁相环电路就上报失锁告警。由于数字锁定指示电路设计简单,易于被监控而被广泛应用。在实际的锁相环电路设计中,往往由于电路参数选择不合理,尽管锁相环处于正常的锁定状态,但由于PFD 的相位误差超过锁定检测窗口而导致数字锁定指示电路显示失锁。因此,必须需要根据特定锁相环配置和外围电路选择合适的检测窗口,或者根据检测窗口要求设计合适的锁相环环路参数和外围电路。 1 概述 在各种锁相环结构中,电荷泵锁相环因其稳定性高,捕获范围大,便于集成等特点而别广泛应用于无线
[测试测量]
<font color='red'>电荷</font>泵锁相环的数字锁定检测电路应用分析
待机调光模式的电荷泵背光LED驱动
  小尺寸的LCD显示模块早已成为手持式数码产品的重要组成部分,随着消费者对视觉方面要求的提高,LCD显示模块的设计变得越来越重要。如何在1.8寸至2.8寸的LCD屏上显示更多的信息并提高显示质量达到更好的视觉效果,成为众多手持式数码产品设计者的重点之一。除了提高LCD屏的分辨率、减小延迟时间以及在软件上提升之外,LCD屏的背光设计也扮演着重要角色。   传统设计中,小尺寸彩色LCD屏一般采用白色LED作为背光源。1.8寸至2.8寸的LCD屏多采用1至4颗白色LED。为达到好的显示效果,要求白色LED亮度一致,明暗可调;为保护手持式设备,要求在某些LED断路时有保护功能,且不能影响正常的LED工作;为延长手持式设备的待机时间
[电源管理]
待机调光模式的<font color='red'>电荷</font>泵背光LED驱动
ADI发布带高电压电荷泵的PLL频率合成器
——新款ADF4113HV频率合成器将电荷泵电压从大多数PLL IC仅有5~6V提升到16.5 V。 ——电荷泵电压的提升为宽带频率合成器应用提供了更宽的频率调谐范围。   美国模拟器件公司(Analog Devices, Inc.,纽约证券交易所代码:ADI),全球领先的高性能信号处理解决方案供应商,今日在中国,北京(Beijing, China.)发布了业界首款带高电压电荷泵的PLL频率合成器。ADF4113HV整数分频频率合成器是专门为那些需要宽频率调谐范围和高调谐电压(15 V)的压控振荡器(VCO)的应用而设计的。ADF4113HV非常适合于诸如个人移动无线电设备(PMR)和通信测试设备之类的产品设计。由于增加了新
[嵌入式]
小广播
最新半导体设计/制造文章
换一换 更多 相关热搜器件
随便看看

About Us 关于我们 客户服务 联系方式 器件索引 网站地图 最新更新 手机版

站点相关: 市场动态 半导体生产 材料技术 封装测试 工艺设备 光伏产业 平板显示 EDA与IP 电子制造 视频教程

词云: 1 2 3 4 5 6 7 8 9 10

北京市海淀区中关村大街18号B座15层1530室 电话:(010)82350740 邮编:100190

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved