信号处理器设计

发布者:大酉幽华1最新更新时间:2014-08-13 来源: eefocus关键字:FPGA  MAX2410  FFT 手机看文章 扫描二维码
随时随地手机看文章

1设计思路

随着实时数字信号处理技术的发展,ARM、DSP和FPGA体系结构成为3G移动终端实现的主要方式。本文的设计通过ARM对目标及环境进行建模、运算,生成网络协议仿真数据库,应用DSP进行数据调度、运算和处理,最后形成所需的调幅、调相、调频等控制字,通过FPGA控制收发器芯片产生射频模拟信号。利用数字芯片之间的通用性,ARM与DSP间的通信,不仅能实时处理接收和发送的数据,还可以适应不同移动网络的具体要求,同时方便加载新的程序。FPGA数字频率合成技术以其在频率捷变速度、相位连续性、相对带宽、高分辨率以及集成化等方面的优异性能,为3G移动终端射频信号模拟的实现方式提供了选择。

2硬件实现

本系统主要部分是ARM主控模块、DSP实时数据处理模块和FPGA信号生成模块。ARM主控模块实现物理层与协议栈的通信,接收高层的指令,执行相应的任务。如协议栈需要在某些子帧中的某个或几个上行时隙发送数据到核心网,在某些子帧中的某个或几个下行时隙接收核心网的数据,这时把所有的指令和数据都存放在同步动态随机存储器(SDRAM)中,然后通知DSP去执行。DSP实时数据处理模块得到数据和命令后,首先处理发送数据,对数据进行信道编码调制、CRC附着、交织、扩频调制等,然后处理接收数据,如信道估计、去干扰、CRC校验、信道解码、解扩、唯特比解码等。FPGA为信号生成模块,管理26 M时钟,进行分频的任务,控制模拟基带(ABB)的自动发送功率控制(APC)、自动接收增益控制(AGC)、自动频率控制(AFC)等,同时也实时控制射频(RF)的工作。当DSP中的一些算法非常稳定后,可以用FPGA来实现这些算法,减少DSP的处理负担。其硬件电路如图1所示。

2.1接口

ARM与DSP的数据交换是通过双口随机存储器(RAM)来实现的,即图1中的SDRAM,起到上下行控制命令、参数和数据等缓存和交换的作用。这里收发双口RAM数据线的位数大小为16 bit,SDRAM存储大小为128 M.硬件中断信号线8(INT8)与硬件中断信号线9(INT9)每5 ms相互产生一次,等于TD-SCDMA空口信号的子帧中断,同时也可以作为ARM与DSP的控制命令、响应来实现ARM与DSP之间的通信。

FPGA的主要的接口有data_out[15:0]接口,与数模转换器(A/D)接口和与RF接口。

data_out[15:0]接口用来输出FPGA运算的结果,与DSP的数据总线挂接在一起,在FPGA内部设置一个三态门,开门信号就是FPGA的片选信号CE.当CE不选通的时候,三态门输出为高阻状态,不会影响DSP的数据总线。在每一个样点间隔的时间内,FPGA运算出相关值的实部和虚部,将它们分别锁存在4个16 bit的锁存器中,并将与DSP相连的data_ready信号置高电平,表示数据已经准备好。DSP检测到data_ready为高后会进行读操作,用地址总线的高几位产生出片选信号将FPGA选通,通过地址总线的低两位A0、A1来选择4个锁存器的其中一个,依次读取实部和虚部两个32位数的高16位和低16位。FPGA内部会对DSP的读操作计数,确认数据分4次读出后,则将data_ready置低,直到下一次运算完毕后再抬高。FPGA的频率、相位和幅度控制字的设置和控制信号的产生由TMS320C5510完成,FPGA可以看作是异步存储设备与TMS320C5510的外存储器接口(EMIF)相连,EMIF采用32 bit总线。

与数模转换器(A/D)接口的A/D一端连接ABB,另一端连接FPGA,传输要发送的数据和移动网络接收的数据。在与A/D的接口部分中,有3个输入端RIF、PS和CLK.RIF用来串行输入A/D转换来的样点值;PS为帧同步信号,它在输入到FPGA后用来驱动FPGA内部的总体控制模块;Clock为移位时钟,它控制A/D与FPGA之间数据串行传输的移位。

与RF接口主要是用来控制发送和接收RF芯片工作。

2.2主控模块

主控模块负责控制和协调各种工作,ARM采用TI公司生产的开放式多媒体应用平台(OMAP)微处理器,通过集成锁相环倍频系统主频可以达到66 MHz,最大外部存储空间可达256 MB,片上资源丰富,外围控制能力强性价比高。由它控制DSP模块接收网络发送的命令及参数,实现无线自由的协议通信。

2.3实时数据处理模块

实时数据处理模块[1]通过共享内存与ARM实现发送的命令、传输参数和数据,根据设定的移动终端工作状态,如Cell Search、随机接入过程(RA)、专用控制信道(DCCH),及目标、环境的实时动态计算FPGA的控制字。同时也通过共享内存上报从网络接收的数据和信息传输给ARM;通过锁存器向处理板提供控衰减控制信号实现睡眠,来达到省电。DSP采用TI公司C5000系列中的TMS320C5510,系统时钟达600 MHz,数据处理速率可以达到4 800 MIPS.提供32/16 bit主机口,具有两个独立的外部存储器接口,其中EMIF支持64 bit总线宽度。

2.4 FPGA模块设计

本文的设计采用Stratix系列芯片,内嵌多达10 Mbit的3种RAM块:512 bit容量的小型RAM、4 KB容量的标准RAM、512 KB的大容量RAM.FPGA模块具有True_LVDS电路,支持低电压差分信号(LVDS)、低电压正射极耦合逻辑(LVPECL)、准电流模式逻辑(PCML)和超传输模式(HyperTranport)差分I/O电气标准,且有高速通信接口。本设计提供了完整的时钟管理方案,具有层次化的结构和多达12个锁相环(PLL)。Stratix系列使用的开发软件是Altera公司提供的新一代开发软件Quartus II.

该系列芯片的最大特色是内嵌硬件乘法器和乘加结构的可编程DSP模块,适用于实现高速信号处理。这种DSP模块是高性能的嵌入算术单元,它可以配置为硬件乘法器、加减法器、累加器和流水线寄存器。Stratix系列具有多达28个DSP模块,可配置为224个嵌入乘法器,可以为大数据吞吐量的应用提供灵活、高效和有价值的方案。这些DSP模块可以实现多种典型的DSP功能,如有相关器、限冲击响应(FIR)滤波、快速傅立叶变换(FFT)功能和加密/解密功能等,其中相关器算法设计是各种其他算法实现的基础和基本组成部分。

移动终端系统接收到的射频信号经过前端预处理后,送到A/D采样,然后通过串行方式输出样点值到FPGA[2].每个样点值是用10 bit的二进制补码表示的,需先通过一个串/并转换器转化为宽度为10 bit的并行信号。首先样点值要进行的是希尔波特变换,希尔波特变换有多种实现方法,这里采用一个129阶的滤波器来实现,滤波器的抽头系数由MATLAB函数Remez产生,得到与其正交的另一路信号;然后以这两路信号分别作为实部和虚部,与本地序列进行相关运算,将相关值的实部和虚部送给DSP做后续处理。这样,DSP才可以通过先对相关值求模,然后对模值出现的峰值的间隔、幅值和数目等信息进行判断和进一步处理,来确定是否捕捉到信号。相关器算法FPGA设计的内部结构框图如图2所示。

2.5 PFGA与RF的接口、总线及时序控制设计

为了增加信道容量、改善带宽效率,TD-SCDMA通过利用上行链路(反向链路)同步、软件无线电和智能天线的技术将时分双工(TDD)与CDMA结合起来。TD-SCDMA要求手机的射频部分具有快速的切换时间、高的动态范围以及发送机和接收机部分的高线性度。MAX2410是一个完整正交发射器,它由一个正交调制器、可变增益IF和RF放大器组成。MAX2309是一种为基于CDMA的单频单模蜂窝电话系统设计的IF接收机,其输入频率范围经过优化达到70 MHz~300 MHz,在35 dBm增益下达-33 dBm,在-35 dBm增益下达+1.7 dBm.FPGA控制RF主要通过4个RF控制寄存器:A word寄存器、B word寄存器、C word寄存器和D word寄存器。

3软件实现

移动终端软件包括应用层软件、通信协议软件和物理层软件3部分。

应用层软件LAY 4-7:包含人机界面(MMI)和系统应用层协议(S/W)部分,MMI为移动终端使用者接口,S/W类似移动终端的操作系统。

通信协议软件LAY 2-3:该部分软件较大,主要为通信协议,主要保证无线通信系统可以在各种状况顺畅互通。

物理层软件LAY 1:负责协调DSP、其他硬件和软件。物理层软件的设计将能实现节能的特性、多资源、多时隙的处理、数据包和对其他网络系统的监测。在设计物理层软件时的还要对相邻小区的监测,特别是当相邻小区间彼此还没有同步的时候。

应用层软件LAY 4-7和通信协议软件LAY 2-3软件的实现主要是在ARM中实现,假如LAY 4-7需要一些特别高要求的应用时,可以再增加相应的硬件模块,而不影响原有的架构,如增加高要求多媒体的处理和播放;物理层软件LAY 1主要在DSP和FPGA中实现。

在软件编程时ARM和DSP可以使用C语言来实现,使用的调试工具为CCS软件,当DSP中有一些算法非常成熟后,移动通信对这块的实时性要求比较高时,应该用汇编语言来实现,在FPGA中可以用VHDL语言来实现。在编程是首先尽量定义好各个功能模块的任务,然后定义好各个功能模块的接口参数等,在可以不用全局变量的时候尽量不用。

另一个主要挑战是在TD-SCDMA终端里实现联合检测算法,特别是关于算法的时间优化。DSP和FPGA之间的任务分配上要有一个合理协调的分工,这样能够最大限度的发挥这两个处理器的功能。在实际软件编程中,算法程序计算量大、编码延时过长,因此需要在保证质量的前提下对算法进行优化。在满足精度要求下,进一步将算法简化,粗化搜索范围来降低计算量;对于高级语言程序代码,用混合汇编、去除嵌套循环等方法进行代码优化,提高代码效率。


4结束语

该系统很好的实现了3G移动终端处理功能,但实际环境比仿真环境更复杂,需要给出解决办法,然后再验证。目前该方案实现了384 kb/s工作,使用3个时隙(每个时隙128 kb/s);实现了基于高速下行分组接入(HSDPA)技术提高数据速率,它类似于WCDMA和CDMA2000标准所提供的速率。开发的3G芯片组能够满足消费者对于改善性能和功能的要求,同时又保持了相同或更低的价格。

关键字:FPGA  MAX2410  FFT 引用地址:信号处理器设计

上一篇:基于FPGA+ARM的HDLC协议控制器的设计与实现
下一篇:基于LED光源的植物生长动态补光控制系统设计

推荐阅读最新更新时间:2024-03-16 13:39

嵌入式与边界设备提供了测试机会
  有两类应用提出了设计与测试挑战,虽然它们并不要求最高的带宽、数据速率和存储器深度。据Agilent技术公司元件测试部副总裁兼总经理Greg Peters称,这些应用包括 嵌入式系统 与边界设备,后一类包括了与真实世界接触的设备,从 传感器 到手机等,而不是关在屋里的服务器。Peters在今年5月25日的国际微波研讨会(IMS)上说,他预计这类设备的数量会大幅增长。   4月份在硅谷召开的嵌入系统大会(ESC)为测试公司提供了一个展示面向嵌入式系统市场产品的机会。Tektronix公司高调宣传了它的混合信号示波器,并演示了它赞助的一个时间与运动研究结果;研究表明,调试设计的工程师们在搜索欠幅脉冲(Runt)和毛刺时,使用Te
[测试测量]
嵌入式与边界设备提供了测试机会
基于FPGA设计航空电子系统
  基于现场可编程门阵列 (FPGA) 核心的实施体现了先进的现代航空电子设计方法。   这项技术具有多种优势,如废弃组件管理、降低设计风险、提高集成度、减小体积、降低功耗和提高故障平均间隔 时间(MTBF)等,吸引着用户将原来的系统转移到此项技术。MIL-STD-1553 的市场可能随着这种趋势而繁荣起来 ;事实上,某些客户已经觉得这项技术的实施有点姗姗来迟。   MIL-STD-1553 核心带来了多种好处,它代表着彻底告别了 ASIC 传统。FPGA 中加入一项知识产权核心,就获得了一种与众不同的特性,而成为一个非常专业的高级子系统。这为增强 MIL-STD-1553 的设计提供了千载难逢的机会。    系统设计面临的
[工业控制]
20×18位符号定点乘法器的FPGA实现
  随着计算机和信息技术的快速发展,人们对器件处理速度和性能的要求越来越高,在高速数字信号处理器(DSP)、微处理器和RSIC等各类芯片中,乘法器是必不可少的算术逻辑单元,且往往处于关键延时路径中,乘法运算需要在一个时钟周期内完成,它完成一次乘法操作的周期基本上决定了微处理器的主频,因此高性能的乘法器是现代微处理器及高速数字信号处理中的重要部件。目前国内乘法器设计思想有4种,分别为:并行乘法器、移位相加乘法器、查找表乘法器、加法树乘法器。其中,并行乘法器易于实现,运算速度快,但耗用资源多,尤其是当乘法运算位数较宽时,耗用资源会很庞大;移位相加乘法器设计思路是通过逐项移位相加实现,其耗用器件少,但耗时钟,速度慢;查找表乘法器将乘积直
[嵌入式]
20×18位符号定点乘法器的<font color='red'>FPGA</font>实现
Crestron 采用英特尔FPGA改进视频质量和连接
移动工作者正在推动对于随时随地连接的需求。很快他们将实现高质量的 4K 连接并在不久之后实现 8K 连接。为了满足这种工作环境的变化,商业音视频系统正在实现真正的统一,将 PC 与视频会议系统和投影仪以及员工“自带”个人设备连接起来。与此同时,新的 4K、HDR 和 8K 视频标准将带来更多挑战,要求设备制造商将系统升级为这些标准,以便将设备推向市场。 随着人们从工作场所会议室转移到较小的协作空间再转移到小隔间,他们希望从任何地方均能够快速访问所需信息。   Crestron 今天宣布,该公司将在其新的数字媒体 AV 发布系统中使用英特尔 Arria® 10 FPGA,该系统可支持 4K 质量的视频会议并为使用任何设备的用户提供无
[嵌入式]
Microchip发布业界能效最高的中端FPGA工业边缘协议栈、更多核心库IP和转换工具
Microchip发布业界能效最高的中端FPGA工业边缘协议栈、更多核心库IP和转换工具,助力缩短创新时间 这些新工具使得转向使用PolarFire® FPGA和片上系统(SoC)FPGA变得比以往更容易 随着智能边缘设备对能效、安全性和可靠性提出新要求,系统架构师和设计工程师不得不寻找新的解决方案。Microchip Technology Inc.(美国微芯科技公司)今日宣布推出新的开发资源和设计服务,以帮助系统设计人员转向使用 PolarFire FPGA和SoC ,包括业界首款中端工业边缘协议栈、可定制的加密和软知识产权(IP)启动库,以及将现有FPGA设计转换为PolarFire器件的新工具。 这些新工具
[嵌入式]
Microchip发布业界能效最高的中端<font color='red'>FPGA</font>工业边缘协议栈、更多核心库IP和转换工具
Cadence推出基于FPGA的快速原型平台
  众所周知,ASIC/SoC的研发团队有各种强大的工具和技术,以验证他们的设计。   一种验证方式是仿真软件,这种方式相对便宜,它可提供方便的可视性设计,但其容量和性能受限,只适合块级验证。另一种方式就是采用硬件加速与仿真,它可以提供设计前后期硬件/软件协同验证和系统级验证。   硬件加速/仿真提供了大容量和先进的调试功能,但价格相对昂贵。此外,即使硬件加速器/仿真器可以提供数倍于软件模拟的速度,它性能仍然有限。Cadence推出的Palladium系列高性能、单系统、多用户加速器/仿真器,使用户能达到1MHz到1.5MHz的范围内的性能。   另一种解决方案就是基于FPGA的快速原型,这比仿真系统要便宜得多,并提供更高的
[测试测量]
Cadence推出基于<font color='red'>FPGA</font>的快速原型平台
一种基于FPGA的多时钟片上网络研究与设计
  在FPGA 上设计一个高性能、灵活的、面积小的通信体系结构是一项巨大的挑战。大多数基于FPGA 的片上网络都是运行在一个单一时钟下。随着FPGA 技术的发展,Xilinx 公司推出了Virtex-4 平台。该平台支持同一时间内32 个时钟运行,也就是说每个片上网络的内核可以在一个独立的时钟下运行, 从而使每个路由器和IP 核都运行在最佳频率上。因此适用于设计多时钟片上网络,实现高性能分组交换片上网络。    1 多时钟片上网络架构的分析   片上网络结构包含了拓扑结构、流量控制、路由、缓冲以及仲裁。选择合适网络架构方面的元素,将对片上网络的性能产生重大影响。   (1)网络拓扑:在设计中,选择Mesh 拓扑结构。Mesh
[嵌入式]
一种基于<font color='red'>FPGA</font>的多时钟片上网络研究与设计
英特尔® FPGA Vision线上研讨会亮点抢先看
英特尔成立独立FPGA公司,加速行业创新 继宣布将可编程解决方案事业部 (PSG) 作为独立业务部门运营后, 英特尔将于3月1日举行FPGA Vision线上研讨会 。届时,首席执行官Sandra Rivera和首席运营官Shannon Poulin将分享有关全新企业品牌、公司愿景与战略,以及市场增长机会的更多信息。 英特尔PSG团队诚邀您参加本次线上研讨会,深入了解独立运营的全新FPGA公司,持续增长的市场及客户需求,以及我们旨在助力行业创新加速的产品路线图。与此同时,线上研讨会还将重点介绍FPGA在AI领域的布局,即如何使AI在数据中心、网络和边缘易于访问及扩展。此外,Rivera和Poulin将重磅发布全新支持工具
[嵌入式]
小广播
添点儿料...
无论热点新闻、行业分析、技术干货……
设计资源 培训 开发板 精华推荐

最新单片机文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved