推荐阅读最新更新时间:2023-10-12 20:19
双向过压过流保护器件NCP370的原理及应用
0 引言
NCP370是安森美半导体(0N Semiconductor)公司生产的具有过压、过流保护及反向控制功能的集成双向保护器件。该器件可以提供高达+28V的正向保护和低至-28 V的负向保护功能,从而提高对便携设备前端的保护。NCP370采用了创新架构,可在器件内部为连接在底部连接器并以锂离子电池供电的外部附件提供OCP保护,而无需使用外部OCP器件。另外,NCP370还集成有低导通阻抗(Ron)的N沟道MOSFET,可有效支持便携设备中的锂离子电池所要求的1.3 A的直接充电电流,并可进一步降低系统成本。
1 NCP370的特点功能
1.1 NCP370的主要特点
NCP37
[模拟电子]
激光器电源的过压保护电路
最简单的过压保护措施是由一只继电器组成,如图所示,一旦储能电容器上电压超过规定值时,继电器J吸合,进而切断供电电源.
[电源管理]
飞兆过压保护器件具有USB/充电器检测功能
飞兆半导体公司为手机、移动音频、计算机和消费应用设计人员提供一款具有USB/充电器检测功能并高度集成的过压保护 (OVP) 器件FAN3989。该器件片内集成了FET并内置自动检测功能,可以侦测USB充电器的插拔,所有功能均集成于单片封装内。相比分立式实现方案,这类集成式自动检测功能更可以简化设计,省略外围电路,进而可以节约15% 到 20%的线路板空间。其过压保护功能是满足新兴安全标准的理想选择,这点对于手机应用尤为重要。
FAN3989可作为USB连接监控器件用以判断是否连接USB设备或电池充电器,它可以发送一个信号至系统控制器以指示系统USB充电器是否连接。FAN3989还可以监控VBUS是否处于
[半导体设计/制造]
LED开路过压保护电路的工作原理
人们通常使用升压转换器将电压电平升压至足够高的水平,以使 LED 偏置并导通。调节 LED 串电流的典型方法是增加一个与 LED 串联的检测电阻器并将其两端的电压作为 脉宽调制 (PWM) 控制器的反馈输入。如果串联 LED 中某个 LED 或某段导线发生故障,则电路就会呈开路负载的状况。中国照明网技术论文·照明设计与工程
在这种情况下,电流检测电阻两端的电压下降到零。当通过增加 PWM 导通时间来提升输出电压失败的时候,控制电路响应将尝试增加 LED 电流。在大多数情况下,输出电压会急剧飙升,直到输出电容、二极管和/或功率 FET 过应力并被损毁。使用图 1 所示的简单LED开路过压保护电路就可以避免出现这种情况。
[电源管理]
过压保护及瞬态电压抑制电路设计
利用电池供电的移动设备通常需要通过外置的 AC适配器对系统电池进行充电。而不同供电电压的设备间往往共用着相似的电源插座和插头,这些不同电压标准的适配器往往会给用户带来潜在的错插风险,可能导致设备因过高的电压而烧毁。另一方面,来自 AC适配器前端的浪涌或者电网的不稳定也有可能导致适配器的输出电压超越设备所能承受的范围。因此,在移动设备设计中就有必要加入充电端口的过压保护电路,以避免上述情况对设备后端电路的破坏。 本文介绍的过压保护电路由过压保护开关(OVP Switch)和瞬态电压抑制器 (TVS)组成(如图1),可实现完善可靠的抗持续高电压和瞬间冲击电压的功能。
图1
在整个方案中,核心部分器件为过压保护开
[电源管理]
瞬态抑制二极管与其它过压保护技术的对比
什么是瞬态抑制二极管?
该产品通过截面积大于常规二极管的p-n结将电压限制在一定范围(称为“钳位”装置),可以将较大电流导向地面,因此不会对元件造成持续损坏。 瞬态抑制二极管通常用于保护传输或数据线路以及电子电路,使其免受雷击、感应负载开关和静电放电等引起的电气过压损害。 Littelfuse瞬态抑制二极管适用于多种电路保护应用,但主要应用于保护电信、工业设备、计算机和消费电子产品中的输入/输出接口。
Littelfuse瞬态抑制二极管的特性包括:
与其他二极管技术的对比:
工作特性的对比:
装置结构的对比: 肖特基二极管是通过将金属焊
[模拟电子]
开关电源控制芯片M51995及其应用
1引言
M51995A是一专门为AC/DC变换设计的离线式开关电源初级PWM控制芯片。该芯片内置大容量图腾柱电路,可以直接驱动MOSFET。M51995A不仅具有高频振荡和快速输出能力,而且具有快速响应的电流限制功能。它的另一大特点是过流时采用断续方式工作。芯片的主要特征如下:
500kHz工作频率;
输出电流达±2A,输出上升时间60μs,下降时间40μs;
起动电流小,典型值为90μA;
起动电压和关闭电压间压差大:起动电压为16V,关闭电压为10V;
改进图腾柱输出方法,穿透电流小;
过流保护采用断续方式工作;
用逐脉冲方
[电源管理]
运算放大器的输入过压保护和输出相位反转
运算放大器输出电压相位反转
超过输入共模电压(CM)范围时,某些运算放大器会发生输出电压相位反转问题。其原因通常是运算放大器的一个内部级不再具有足够的偏置电压而关闭,导致输出电压摆动到相反电源轨,直到输入重新回到共模范围内为止。图1所示为电压跟随器的输出相位反转情况。注意,输入可能仍然在电源电压轨内,只不过高于或低于规定的共模限值之一。这通常发生在负范围,最常发生相位反转的是JFET和/或BiFET放大器,但某些双极性单电源放大器也有可能发生。
图1:电压跟随器的输出电压相位反转
相位反转通常只是暂时现象,但如果运算放大器在伺服环路内,相位反转可能会引起灾难性后果。
[模拟电子]