模拟控制式和数字控制式VGA(二):数字控制式VGA

最新更新时间:2012-09-29来源: 互联网关键字:模拟  控制式  数字控制式  VGA 手机看文章 扫描二维码
随时随地手机看文章
本指南将重点讨论适合通信系统的VGA,上篇讨论了模拟控制式VGA,下面我们将探讨数字控制式VGA。

  在某些情况下,以数字方式控制信号电平可能会大有好处。上行电缆调制解调器驱动器便是一例,如AD8325。

  由于数据速率远高于标准拨号连接,有线调制解调器越来越受欢迎。除接收数据(下行)之外,有线调制解调器还能发射数据(上行)。这就要求使用低失真的数字控制式可变增益放大器,且该放大器能够以1 V rms的标称电平(+11.2 dBm或60 dBmV)驱动75 同轴电缆。AD8325就是适合此应用的有线电视(CATV)上行线路驱动器系列的一款产品。AD8325的增益由一个8位串行字控制,该字在59.45 dB范围内决定所需增益,进而产生0.7526 dB/LSB的增益变化。AD8325框图如下面图8所示。

  图8:AD8325 CATV数字控制式可变增益放大器

  AD8325具有一个可变衰减器内核,以数字方式控制衰减,范围为0 dB至–59.45 dB。输入缓冲器的增益大约为+ 30 dB,因此得到的总增益范围为–29.45 dB至+30.0 dB。在上电模式下,AD8325包括四个模拟功能。输入放大器(前置放大器)可以采用单端或差分配置。8位控制字解码成一个3位字和一个9位字,前者驱动游标级(精密增益调整),后者则驱动衰减内核(DAC)。游标级中实现0.7526 dB/LSB分辨率,总衰减约为5.25 dB。在游标级之后,由DAC提供AD8325衰减的批处理(9位或54 dB)。前置放大器和游标增益模块中的信号为差分形式,以提高PSRR和线性度。差分电流从DAC馈入输出级,后者将这些电流放大到驱动75 负载所需的合适电平。AD8325在上电和关断情况下均可保持恒定的75 动态输出阻抗,这是该器件的一项主要性能和成本优势。输出级利用负反馈来实现75 差分动态输出阻抗。这样便无需使用外部75 端接电阻,进而产生是标准运算放大器两倍的有效输出电压。

  这些特性使得AD8325能够采用+5 V单电源工作并且仍能提供所需的输出功率。在21 MHz带宽、输出电平最高为1 V rms (+11.2 dBm)时,失真性能为-57 dBc。

  AD8370是一款低成本、数字控制、可变增益放大器,可以提供精密增益控制、高IP3和低噪声系数。框图如图9所示。

  图9:750MHz数字控制式VGA AD8370

  AD8370具有出色的失真性能和宽带宽。对于宽输入动态范围应用,AD8370能提供以下两种输入范围:高增益模式和低增益模式。一个游标7位跨导(Gm)级能够以优于2 dB的分辨率提供28 dB增益范围,以优于1 dB的分辨率提供22 dB的增益范围。第二种增益范围比第一种要高17 dB,可选择用于改善噪声性能。AD8370的电源由PWUP引脚的逻辑电平提供,在关断模式下,其功耗小于4 mA,可以提供出色的输入-输出隔离。关断模式下工作时,增益设置保持不变。

  AD8370的增益控制通过一个8位串行增益控制字实现。MSB在两个增益范围之间进行选择,余下的7位则以精确线性增益步进调整总增益。

  AD8375是一款差分可变增益放大器,由一个150 数字控制式无源衰减器后接高线性度跨导放大器组成,如图10所示。

  图10:630MHz低失真数字控制式VGA AD8375

  一个5位二进制代码以1 dB步进更改衰减设置,从而使得器件的增益从20 dB(代码0)变为−4 dB(代码24及以上)。最大增益设置下,器件的噪声系数约为8 dB,并会随着增益下降而增加。噪声系数的增加量与增益的减少量相等。在输出端测得的器件线性度是一阶的,且与增益设置无关。增益介于0 dB至20 dB之间时,140 MHz条件下150 负载的OIP3约为50 dBm(每个信号音3 dBm)。增益设置为0 dB以下时,则会下降至约45 dBm。

关键字:模拟  控制式  数字控制式  VGA 编辑:神话 引用地址:模拟控制式和数字控制式VGA(二):数字控制式VGA

上一篇:鉴频鉴相器(PFD)常见实现方案
下一篇:模拟控制式和数字控制式VGA(一)可变增益放大

推荐阅读最新更新时间:2023-10-12 20:42

Eldo Premier模拟器工具【Mentor Graphics】
美国俄勒冈州威尔逊维尔,2011年4月12日-明导国际(Mentor Graphics)今天推出了Eldo® Premier工具,这是目前业内最快的SPICE仿真解决方案之一。与传统的SPICE相比,Eldo Premier工具不仅具有最高精度,而且可将性能与容量分别提高20倍和10倍。Eldo Premier工具适用于要求占用大量CPU资源的瞬态仿真应用领域,例如TFT面板、PLL和DLL、频率综合器、Σ-Δ转换器、ADC/DAC音频和视频转换器、汽车电路、DC-DC转换器、稳压器、电源管理电路,以及存储器关键的路径分析。 Eldo Premier工具借助专有的高级解算技术,加快大型电路前仿和后仿过程。通过在求解非
[半导体设计/制造]
利用模拟开关实现T1/E1/J1的N+1冗余
相关应用笔记:Intel(R) T1/E1/J1, N+1 Redundancy With Analog Switches and Intel(R) LXT38x Line Interface Units 表1. 模拟开关与继电器的比较 Relay Analog Switch Board Space 100mm2 15mm2 Power Consumption 140mW 5µW Switching Speed 4ms 30ns Reliability Mechanical Operation N
[模拟电子]
利用<font color='red'>模拟</font>开关实现T1/E1/J1的N+1冗余
模拟滤波器和数字滤波器
 数字滤波器用于离散系统;模拟滤波器用于连续时间系统,也可以用在离散时间系统中,比如SC(开关电容)滤波器。   数字滤波器由数字乘法器、加法器和延时单元组成的一种算法或装置。数字滤波器的功能是对输入离散信号的数字代码进行运算处理,以达到改变信号频谱的目的。数字滤波器可用计算机软件实现,也可用大规模集成数字硬件实现。   模拟滤波器有有源和无源的,有源滤波器主要是有运放,或者跨到运放,及电阻,电容构成。无源的滤波器主要是R,L,C构成。模拟滤波器会有电压漂移、温度漂移和噪声等问题,而数字滤波器不存在这些问题,因而可以达到很高的稳定度和精度。   从实现手段上看,模拟滤波器一般用电容,电感这些模拟器件搭建的,数字滤
[模拟电子]
STM32的ADC的采样时间及模拟信号的最大带宽
请看STM32技术参考手册的16.2节,和STM32F103xx数据手册的5.3.17节表44。可以在ST的中文网站下载到上述2个手册: http://www.stmicroelectronics.com.cn/stonline/mcu/MCU_Pages.htm 前面所说“STM32的ADC的采样及转换时间最小为1us”,实际上STM32的ADC采样及转换时间可以通过程序编程进行调整,共有8种选择,按 ADC模块的驱动时钟算分别为: 1.5 ADC时钟周期 7.5 ADC时钟周期 13.5 ADC时钟周期 28.5 ADC时钟周期 41.5 ADC时钟周期 55.5 ADC时钟周期 71.5 ADC时钟周期 239.5 ADC
[单片机]
乘法器在模拟运算电路中的应用
晶体管的集电极负载若采用LC谐振回路,为了使振荡稳定,皮尔斯C-B或波尔斯B-E电路的振荡频率必须稍稍调偏,如不用电感L,则可采用本电路这种无调节振荡电路。 电路工作原理 若把石英振子看成电感L,则可将其作为变形克拉普振荡电路对待。电容器C2、C3进行正反馈,频率越低,电容量越要大,100PF时,振荡频率可达5~20MHZ,应根据使用要求选用最合适的容量。 C1和VC1用来进行振荡频率的微调,如果把变容二极管接在这里,便成了VCXO电路。振荡回路的负载变化,频率也会产生一定的变化,所以负载与输出之间应加缓冲放大器TR2。基极电阻R6和射极电阻R3是保证发射极输出器不产生异常振荡的稳定电阻。
[模拟电子]
乘法器在<font color='red'>模拟</font>运算电路中的应用
STM32模拟串口输出偶有乱码
因为芯片串口不够用,只好用IO口模拟串口,在网上下载了个模拟串口的程序,可运行,但发现串口输出隔几个字符就会出现乱码,主要部分代码如下: #define OI_TXD PAout(12) #define OI_RXD PAin(11) #define BuadRate_9600 100 u8 len = 0; //接收计数 u8 USART_buf ; //接收缓冲区 u8 recvStat = COM_STOP_BIT; u8 recvData = 0; void IO_TXD(u8 Data) { u8 i = 0; OI_TXD = 0;
[单片机]
隔离双向功率转换器的数字控制
摘要 本文探讨隔离式双向DC-DC功率传输的实现方案,即通过调整专用数字控制器,使其除了具有标准的正向功率传输(FPT)功能外,还支持反向功率传输(RPT)功能。文中将介绍系统建模、电路设计和仿真,并通过实验对理论概念进行了验证。应用表明,在两个能量传输方向上,转换效率始终高于94%。 简介 模块化电池储能系统(ESS)有助于可再生电力的有效利用,因而是构建绿色能源生态系统的关键技术。梯次利用电池ESS应用日趋广泛。在这个子市场中,预计高达80%的废弃电池会用于ESS,在固定电网服务中焕发新生,从而将电池的使用寿命从5年延长到15年。预计到2030年,这些系统会给电网增加1 TWh的容量。1在不久的将来,这种新兴应用
[电源管理]
隔离<font color='red'>式</font>双向功率转换器的<font color='red'>数字控制</font>
小广播
最新模拟电子文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved