DC-DC电机伺服驱动专用电源设计

发布者:MindfulYogi最新更新时间:2012-03-16 来源: 21ic 关键字:DC-DC  电机伺服驱动  专用电源 手机看文章 扫描二维码
随时随地手机看文章

  该设计采用多重滤波措施和双绞线输出方式,有效降低输出电压纹波,提高电源输出质量;具备完善的自保护功能和监控检测功能,提高了电源的安全性和可靠性。设计以DC-DC变换器为核心,实现220V市电至+60V/20A的电源转换。电源设计中采用功率因数校正技术,提高了有功功率;特别是电源设计了微机控制接口,与随动系统同步工作,并实现了上电时序控制,确保+60V电压相对低压输出滞后上电。

电源设计

系统结构

  220V交流电压经整流和滤波后得到320V左右的直流电压,加至电源模块输入端。单DC-DC模块的最高输出电压一般为+48V,要得到+60V的直流输出电压,必须采用模块串联的方法得到。设计采用两块PH600S280-28 DC-DC模块(调至+30V输出),通过串联得到+60V的输出电压,如图1所示。



图1 模块串联方式

  快恢复二极管D1、D2为串联方式中的保护器件,要求D1、D2反向耐压大于两倍的电源额定输出电压,电流大于两倍的电源额定输出电流,正向导通压降应尽量小。由于是采用两个电源模块串联构成电源系统,在一个有限制的封装内完成设计有一定困难,有的模块串联方案采用两个封装完成设计,即设计两个30V 的独立电源,再进行外部串联构成+60V电源系统。本设计通过合理配置空间,在电源上下盒盖中各安装一个DC-DC模块,以金属壳体作为散热手段,采用紧凑的设计和安装技术将整个电源系统封装在一个较小的空间内,使整个电源体积、重量大大减小,截面积仅为6×9英寸2,实现了小体积大功率的一体化电源系统设计。

功率因数校正措施

  开关电源的桥式整流、大电容滤波电路令整体负载表现为容性,使220V交流输入的电流电压相位产生差异,造成功率因数低下,有功功率下降并产生高次谐波污染电网,因此必须采取功率因数校正(PFC)措施。基于成本控制、电路体积及应用方便等因素考虑,我们采用被动式功率因数校正措施。被动式PFC结构简单,针对电源的整体负载特性表现,在滤波大电容之前串接一个参数适宜的功率电感,这里采用10mH/8A的环形磁心电感。强制平衡电源的整体负载特性,保证功率因数不低于0.8。被动式PFC采用电感等无源元件,工作可靠成本低廉,且无需对原电气设计进行修改,是目前常用的PFC方法。

设计特点与关键技术

微机控制和检测接口

  微机控制(图2)功能可以确保+60V/20A电源只在计算机送出使能信号、伺服系统工作的状态下启动输出,平时电源无输出。这种电源与随动系统同步工作的方式,具有省电、低发热、控制灵活等一系列优点。在某装备电源系统的一系列电源中,+60V/20A电源功耗最大,但发热量最小,温升最低,充分证明了电源设计中采用计算机控制接口的优越性。

图2 微机控制接口

  电源内部还提供针对+60V的微机检测接口,进行开关量方式的实时检测,如图3所示。+60V电压作为检测光耦的输入驱动,光耦输出作为检测口与微机数字I/O口连接。正常情况下检测口为低电平,一旦+60V输出消失或大幅降低,光耦的输出电平将由低到高发生跳变,提供给微机I/O口。

图3 微机检测接口

上电时序控制

  直流电机控制系统中存在上电时序问题,一般情况下驱动电压上电速度快,而控制电路电压上电后控制电平的建立需要一定时间。这样如果不进行上电时序控制,在系统上电的瞬间,高压比低压上电速度快,控制电平的建立相对滞后,导致在上电瞬间随动系统失控,电机出现短时间的失控转动,尤其是在双极性控制方式中。传统的解决方法通过设立高、低压开关手动控制上电时序,或是在控制系统中设计上电时序控制电路,这样必然增加了电路的复杂性,造成电路成本增加同时可靠性降低。而在电机驱动电源上解决这一问题,措施简单有效,工作原理为:CNT端为模块使能控制端,可以控制模块的工作状态,作为输出电压的控制开关。通常采用光耦来控制CNT端的状态。只需增加一只光耦,即可解决上电时序问题。如图2所示,光耦输入端由电机控制电路的工作电压+5V控制,这样+60V电源输出必然滞后于低压+5V,实现了上电时序控制功能,从根本上解决了前述问题。

电源保护功能与电磁兼容措施

  模块内有过流、过压、过热保护功能,使用外接电位器可在额定输出电压±10%的范围内调节。在电源系统设计中,我们在220V整流后的高压输入端、+60V输出端等关键部位采用TVS浪涌吸收器对电压瞬变和浪涌冲击进行防护抑制措施,以旁路吸收的方式保护了电源系统,同时降低了电磁干扰,提高了电源系统可靠性与寿命。

  我们实验测得的+60V输出电压纹波在800mV~1000 mV,明显偏大。通过在电源系统调整端和输出端采用聚脂电容滤波,电源内部采用双绞线走线方式等滤波措施,最终使得+60V电源系统的输出纹波控制在200mV~400 mV,满足了+60V/20A电源纹波电压≤600mV的使用要求。

结语

  本设计的电源相对传统的通用型大功率电源有着明显的的技术优势,其多功能的技术特点,符合电机驱动电源系统的发展方向。本专用电源已正式交付使用,成功应用在某型号天文导航装备上,功能实用、控制方便,工作稳定可靠。

关键字:DC-DC  电机伺服驱动  专用电源 引用地址:DC-DC电机伺服驱动专用电源设计

上一篇:无线躯体传感器网络中低能耗的时间同步算法
下一篇:单端正激式变换器电路设计

推荐阅读最新更新时间:2024-05-02 21:57

DC-DC转换器原理及应用
DC-DC转换器原理及应用  当您电池的最后一焦耳电能被耗尽时,功耗和效率就将真正呈现出新含义。以一款典型的手机为例,即使没有用手机打电话,LCD屏幕亮起、显示时间及正在使用的网络运营商等任务也会消耗电力。如果它是一款更高级的手机,还可以播放您喜爱的MP3音乐或浏览视频数据。不过,每为手机增加一种功能,实际上也增加了电池的负担。对于大多数手机设计者来说,能否延长可用电力的使用时间是您的手机在下次充电前能够持续多久的关键。这意味着电力需要在各种功能模块间小心谨慎地保护和预算,以最大限度地延长电池寿命和使用。   要实现真正的效率,并不仅仅意味着DC-DC转换器在负载指定的某个操作点可以获得多高的效率,而是在DC-DC转换器整
[电源管理]
<font color='red'>DC-DC</font>转换器原理及应用
利用LM3478设计50W DC-DC升降压变换器
  引言   现代电子技术发展很快,半导体供应商不断推出新器件,从而推动电子应用工程师的不断创新设计,以满足市场的日益需求。本文介绍的即是基于客户的需求,应用美国国家半导体公司的新型电流型PWM芯片LM3478及基于SEPIC升降压原理实现的50W DC-DC 适配器。该适配器的主要特点是:直流输入电压范围极宽;输出功率大;保护功能全;输出纹波小;效率高;工作稳定可靠;应用范围广。   SEPIC型变换器   SEPIC的电气原理简图如图1所示。      通常称之为升降压变换器SEPIC的简单原理如下:当SW开通时,加在L1,L2上的电压均为Vin,此时Cp并在L2上,且有Cp上的电压与L2上的相等。当SW关断时,
[模拟电子]
Altera DC-DC电源转换器系统功效提高35%
Altera公司发布四款新参考设计,这些设计采用了通过收购Enpirion而获得的 电源 技术。参考设计为FPGA用户和电路板开发人员提供了全包电源解决方案,与竞争电源解决方案相比,功效提高35%,电路板面积减小50%,总材料(BOM)体电容成本降低了50%。Altera 电源优化 参考设计以可下载设计包的形式提供给客户,在Altera开发套件硬件中进行了演示。现在可以下载面向Cyclone V SoC的设计包,本季度末还会提供面向28 nm FPGA的其他设计包。 Altera电源优化参考设计采用了Enpirion PowerSoC DC-DC转换器,在很小的高效散热封装中包括了集成控制器、高频功率FET和电感。对超小型高
[电源管理]
DC-DC LED照明开关驱动器方案选择
要使 LED 照明系统能够提供期望的长寿命等优势,必须选择恰当的LED驱动方案。户外照明应用以及汽车照明、应急车辆照明、船舶应用及飞机内部照明等应用,可能采用离线交流适配器、密封铅酸 电池 及12V直流(DC)和12V AC电源等输入电源,电压一般都低于40V。船舶应用中的电压范围可能在直流8至超过14V之间,汽车应用中电压范围甚至为更宽的7~27V。这就要求 LED驱动器 能够在宽输入电压范围内工作,并能配置为不同拓扑结构,配合负载要求。    典型DC/DC LED驱动方案比较   LED驱动方案的一项主要功能是在多种工作条件下稳流,而不论输入条件如何及正向电压如何变化。驱动方案必须符合能效、外形因数、成本及安全性方面的应
[电源管理]
<font color='red'>DC-DC</font> LED照明开关驱动器方案选择
行业首款用于半桥和全桥DC-DC转换器的100 V桥式功率级模块
APEC 2017– 展台1001 - 美国佛罗里达州坦帕市–2017年3月28日 — 推动高能效创新的安森美半导体(ON Semiconductor,美国纳斯达克上市代号:ON),推出了行业首款100 V桥式功率级模块FDMF8811 用于半桥和全桥隔离型DC-DC转换器。该器件额定电流25 A,在一个PQFN-36的封装中集成了一个120 V驱动器IC、一个自举二极管和两个高能效的功率MOSFET。 与分立方案相比,FDMF8811减少DC-DC转换器设计所需的板面积约三分之一,使工程师能够设计更小的系统。如果空间不是问题,那么FDMF8811还能在现有的可用板面积内增加电力输送。FDMF8811极其适用于云应用如无线基
[电源管理]
行业首款用于半桥和全桥<font color='red'>DC-DC</font>转换器的100 V桥式功率级模块
业内尺寸最小的2A同步整流降压调节器【Maxim】
        Maxim推出采用微型1.65mm x 1.65mm晶片级封装(WLP)的电流模式、同步整流DC-DC转换器MAX15053。该款小尺寸降压调节器在满载(2A)时的转换效率高达96%,器件内置MOSFET,可有效简化设计、降低EMI、节省电路板空间。MAX15053工作在1MHz固定开关频率,允许使用小尺寸外部无源元件,实现全陶瓷电容设计,进一步减小整体方案尺寸。峰值电流模式架构在简化补偿设计的同时,能够确保优异的负载调节率。MAX15053提供固定频率PWM和跳脉冲两种工作模式,适用于多种应用,包括:电信、网络、基站设备以及笔记本电脑等便携设备。     器件的其它特性包括:用于电源排序的使能输入和电源
[电源管理]
业内尺寸最小的2A同步整流降压调节器【Maxim】
确定汽车DC-DC转换器的关键元件
在广阔的汽车电子领域,动力系统起着至关重要的作用,尤其是在配备启停系统的汽车中。该系统越来越多地嵌入汽车中,允许发动机在交通停车、红绿灯和等待行程的所有情况下自动关闭和重新启动。在电机重启阶段,会出现高电流峰值,导致 12 V 的电源电压降到一半。 这样做的后果是车载电子设备,如汽车收音机、导航设备、制冷系统、通风系统等,可能会出现严重故障,甚至损坏电子元件。大功率 DC-DC 转换器的控制单元 (ECU) 专为克服这个问题而设计,可在电机重启阶段稳定 12 V 电源。 DC-DC 转换器起主要作用,也用于不同类型的应用,例如混合动力汽车(HEV,Hybrid Electric Vehicle)。DC/DC 转换器的优化和
[嵌入式]
确定汽车<font color='red'>DC-DC</font>转换器的关键元件
士兰微电子推出高效降压型DC-DC转换器
杭州士兰微电子公司近日推出了适用于车载电子系统的限流值可调、高效降压型SD4521X系列DC-DC转换器,包括SD45215 / 16 / 17。该系列芯片采用恒压/恒流控制模式,具有抖频功能,系统效率高达90%以上。SD45215 / 16 / 17分别拥有1.5A / 2.1A / 2.1A的输出电流能力,可广泛应用于车载充电器领域。 芯片基于士兰微电子先进的60V BCD工艺,并在内部使用高精度的修调技术,提高了芯片一致性,从而可以实现芯片的高精度恒压恒流控制。当SD45215 / 16输入电压在8~36V和SD45217输入电压在8~60V之间变化时,或当输出电流在限流范围内变化时,芯片的输出电压变化率均可控制在2%以内
[电源管理]
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved