uart,spi,i2c总线的区别

发布者:Yuexiang最新更新时间:2016-03-14 来源: eefocus关键字:uart  spi  i2c总线 手机看文章 扫描二维码
随时随地手机看文章
I2C的数据输入输出用的是一根线,SPI则分为dataIN和dataOUT。由于这个原因,采用I2C时CPU的端口占用少,SPI多一根。但是由于I2C的数据线是双向的,所以隔离比较复杂,SPI则比较容易。所以系统内部通信可用I2C,若要与外部通信则最好用SPI带隔离(可以提高抗干扰能力)。但是I2C和SPI都不适合长距离传输。长距离时就要用485了。

第一:
     SPI(Serial Peripheral Interface:串行外设接口); I2C(INTER IC BUS);UART(Universal Asynchronous Receiver Transmitter:通用异步收发器)
第二,区别在电气信号线上:
     SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。     如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。
     I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。     如果用通用IO口模拟I2C总线,并实现双向传输,一条串行数据线SDA,一条串行时钟线SCL

     UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。
第三,从第二点明显可以看出,SPI和UART可以实现全双工,但I2C不行;
个人认为:
     I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。SPI实现要简单一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI则无所谓,因为它是有时钟的协议。
     I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。
SPI总线系统是一种同步串行外设接口,它可以使MCU与各种外围设备以串行方式进行通信以交换信息。外围设置FLASHRAM、网络控制器、LCD显示驱动器、A/D转换器和MCU等。SPI总线系统可直接与各个厂家生产的多种标准外围器件直接接口,该接口一般使用4条线:串行时钟线(SCK)、主机输入/从机输出数据线MISO、主机输出/从机输入数据线MOST和低电平有效的从机选择线SS(有的SPI接口芯片带有中断信号线INT或INT、有的SPI接口芯片没有主机输出/从机输入数据线MOSI)。
SPI的通信原理很简单,它以主从方式工作,这种模式通常有一个主设备和一个或多个从设备,需要至少4根线,事实上3根也可以(单向传输时)。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。
(1)SDO     – 主设备数据输出,从设备数据输入
(2)SDI    – 主设备数据输入,从设备数据输出
(3)SCLK – 时钟信号,由主设备产生
(4)CS        – 从设备使能信号,由主设备控制
其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。
接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过 SDO线,数据在时钟上升沿或下降沿时改变,在紧接着的下降沿或上升沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。
要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。
在点对点的通信中,SPI接口不需要进行寻址操作,且为全双工通信,显得简单高效。在多个从设备的系统中,每个从设备需要独立的使能信号,硬件上比I2C系统要稍微复杂一些。
最后,SPI接口的一个缺点:没有指定的流控制,没有应答机制确认是否接收到数据。
AT91RM9200的SPI接口主要由4个引脚构成:SPICLK、MOSI、MISO及 /SS,其中SPICLK是整个SPI总线的公用时钟,MOSI、MISO作为主机,从机的输入输出的标志,MOSI是主机的输出,从机的输入,MISO 是主机的输入,从机的输出。/SS是从机的标志管脚,在互相通信的两个SPI总线的器件,/SS管脚的电平低的是从机,相反/SS管脚的电平高的是主机。在一个SPI通信系统中,必须有主机。SPI总线可以配置成单主单从,单主多从,互为主从。SPI的片选可以扩充选择16个外设,这时PCS输出=NPCS,说NPCS0~3接4-16译码器,这个译码器是需要外接4-16译码器,译码器的输入为NPCS0~3,输出用于16个外设的选择。
SPI协议举例
SPI是一个环形总线结构,由ss(cs)、sck、sdi、sdo构成,其时序其实很简单,主要是在sck的控制下,两个双向移位寄存器进行数据交换。
   假设下面的8位寄存器装的是待发送的数据10101010,上升沿发送、下降沿接收、高位先发送。
   那么第一个上升沿来的时候数据将会是sdo=1;寄存器=0101010x。下降沿到来的时候,sdi上的电平将所存到寄存器中去,那么这时寄存器=0101010sdi,这样在 8个时钟脉冲以后,两个寄存器的内容互相交换一次。这样就完成里一个spi时序。
举例:
   假设主机和从机初始化就绪:并且主机的sbuff=0xaa,从机的sbuff=0x55,下面将分步对spi的8个时钟周期的数据情况演示一遍:假设上升沿发送数据
这样就完成了两个寄存器8位的交换,,sdi、sdo相对于主机而言的。其中ss引脚作为主机的时候,从机可以把它拉底被动选为从机,作为从机的是时候,可以作为片选脚用。根据以上分析,一个完整的传送周期是16位,即两个字节,因为,首先主机要发送命令过去,然后从机根据主机的命令准备数据,主机在下一个8位时钟周期才把数据读回来。 SPI 总线是Motorola公司推出的三线同步接口,同步串行3线方式进行通信:一条时钟线SCK,一条数据输入线OSI,一条数据输出线MISO;用于CPU与各种外围器件进行全双工、同步串行通讯。SPI主要特点有:可以同时发出和接收串行数据;可以当作主机或从机工作;提供频率可编程时钟;发送结束中断标志;写冲突保护;总线竞争保护等。下图示出SPI总线工作的四种方式,其中使用的最为广泛的是SPI0和SPI3方式 (实线表示):                                      
SPI总线四种工作方式 SPI 模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果 CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设备时钟相位和极性应该一致。
SPI总线包括1根串行同步时钟信号线以及2根数据线。
   SPI模块为了和外设进行数据交换,根据外设工作要求,其输出串行同步时钟极性和相位可以进行配置,时钟极性(CPOL)对传输协议没有重大的影响。如果CPOL=0,串行同步时钟的空闲状态为低电平;如果CPOL=1,串行同步时钟的空闲状态为高电平。时钟相位(CPHA)能够配置用于选择两种不同的传输协议之一进行数据传输。如果CPHA=0,在串行同步时钟的第一个跳变沿(上升或下降)数据被采样;如果CPHA=1,在串行同步时钟的第二个跳变沿(上升或下降)数据被采样。SPI主模块和与之通信的外设音时钟相位和极性应该一致。
补充:
上文中最后一句话:SPI主模块和与之通信的外设备时钟相位和极性应该一致。个人理解这句话有2层意思:其一,主设备SPI时钟和极性的配置应该由外设来决定;其二,二者的配置应该保持一致,即主设备的SDO同从设备的SDO配置一致,主设备的SDI同从设备的SDI配置一致。因为主从设备是在SCLK的控制下,同时发送和接收数据,并通过2个双向移位寄存器来交换数据。
上升沿主机SDO发送数据1,同时从设备SDO发送数据0;紧接着在SCLK的下降沿的时候从设备的SDI接收到了主机发送过来的数据1,同时主机也接收到了从设备发送过来的数据0.
SPI协议心得
SPI接口时钟配置心得:
在主设备这边配置SPI接口时钟的时候一定要弄清楚从设备的时钟要求,因为主设备这边的时钟极性和相位都是以从设备为基准的。因此在时钟极性的配置上一定要搞清楚从设备是在时钟的上升沿还是下降沿接收数据,是在时钟的下降沿还是上升沿输出数据。但要注意的是,由于主设备的SDO连接从设备的SDI,从设备的SDO连接主设备的SDI,从设备SDI接收的数据是主设备的SDO发送过来的,主设备SDI接收的数据是从设备SDO发送过来的,所以主设备这边SPI时钟极性的配置(即SDO的配置)跟从设备的SDI接收数据的极性是相反的,跟从设备SDO发送数据的极性是相同的。下面这段话是Sychip Wlan8100 Module Spec上说的,充分说明了时钟极性是如何配置的:
The 81xx module will always input data bits at the rising edge of the clock, and the host will always output data bits on the falling edge of the clock.
意思是:主设备在时钟的下降沿发送数据,从设备在时钟的上升沿接收数据。因此主设备这边SPI时钟极性应该配置为下降沿有效。
又如,下面这段话是摘自LCD Driver IC SSD1289:
SDI is shifted into 8-bit shift register on every rising edge of SCK in the order of data bit 7, data bit 6 …… data bit 0.
意思是:从设备SSD1289在时钟的上升沿接收数据,而且是按照从高位到地位的顺序接收数据的。因此主设备的SPI时钟极性同样应该配置为下降沿有效。
时钟极性和相位配置正确后,数据才能够被准确的发送和接收。因此应该对照从设备的SPI接口时序或者Spec文档说明来正确配置主设备的时钟。
软件过程改进
SPI: Software Process Improvement. 软件过程改进。是软件企业项目过程质量的改进,CMM,ISO9000-3说的就是这个。
UART
开放分类: 计算机、通信、信息
UART: Universal Asynchronous Receiver/Transmitter,通用异步接收/发送装置,UART是一个并行输入成为串行输出的芯片,通常集成在主板上,多数是16550AFN芯片。因为计算机内部采用并行数据数据,不能直接把数据发到Modem,必须经过UART整理才能进行异步传输,其过程为:CPU先把准备写入串行设备的数据放到UART的寄存器(临时内存块)中,再通过FIFO(First Input First Output,先入先出队列)传送到串行设备,若是没有FIFO,信息将变得杂乱无章,不可能传送到Modem。
它是用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了RS-232C数据终端设备接口,这样计算机就可以和调制解调器或其它使用RS-232C接口的串行设备通信了。作为接口的一部分,UART还提供以下功能:将由计算机内部传送过来的并行数据转换为输出的串行数据流。将计算机外部来的串行数据转换为字节,供计算机内部使用并行数据的器件使用。在输出的串行数据流中加入奇偶校验位,并对从外部接收的数据流进行奇偶校验。在输出数据流中加入启停标记,并从接收数据流中删除启停标记。处理由键盘或鼠标发出的中断信号(键盘和鼠标也是串行设备)。可以处理计算机与外部串行设备的同步管理问题。有一些比较高档的UART还提供输入输出数据的缓冲区,现在比较新的UART是16550,它可以在计算机需要处理数据前在其缓冲区内存储16字节数据,而通常的UART是8250。现在如果您购买一个内置的调制解调器,此调制解调器内部通常就会有16550 UART。

区别在电气信号线上:

     SPI总线由三条信号线组成:串行时钟(SCLK)、串行数据输出(SDO)、串行数据输入(SDI)。SPI总线可以实现多个SPI设备互相连接。提供SPI串行时钟的SPI设备为SPI主机或主设备(Master),其他设备为SPI从机或从设备(Slave)。主从设备间可以实现全双工通信,当有多个从设备时,还可以增加一条从设备选择线。

     如果用通用IO口模拟SPI总线,必须要有一个输出口(SDO),一个输入口(SDI),另一个口则视实现的设备类型而定,如果要实现主从设备,则需输入输出口,若只实现主设备,则需输出口即可,若只实现从设备,则只需输入口即可。

     I2C总线是双向、两线(SCL、SDA)、串行、多主控(multi-master)接口标准,具有总线仲裁机制,非常适合在器件之间进行近距离、非经常性的数据通信。在它的协议体系中,传输数据时都会带上目的设备的设备地址,因此可以实现设备组网。

     如果用通用IO口模拟I2C总线,并实现双向传输,则需一个输入输出口(SDA),另外还需一个输出口(SCL)。(注:I2C资料了解得比较少,这里的描述可能很不完备)

     UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。

     显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。

从以上很明显可以看出,SPI和UART可以实现全双工,但I2C不行;

第四,看看牛人们的意见吧!

     A:I2C线更少,我觉得比UART、SPI更为强大,但是技术上也更加麻烦些,因为I2C需要有双向IO的支持,而且使用上拉电阻,我觉得抗干扰能力较弱,一般用于同一板卡上芯片之间的通信,较少用于远距离通信。SPI实现要简单一些,UART需要固定的波特率,就是说两位数据的间隔要相等,而SPI则无所谓,因为它是有时钟的协议。

     B:I2C的速度比SPI慢一点,协议比SPI复杂一点,但是连线也比标准的SPI要少。

-----------------------------------------------------------------------------------------------------------------------------------

SPI 是一种允许一个主设备启动一个与从设备的同步通讯的协议,从而完成数据的交换。也就是SPI是一种规定好的通讯方式。这种通信方式的优点是占用端口较少,一般4根就够基本通讯了。同时传输速度也很高。一般来说要求主设备要有SPI控制器(但可用模拟方式),就可以与基于SPI的芯片通讯了。

    SPI 的通信原理很简单,它需要至少4根线,事实上3根也可以。也是所有基于SPI的设备共有的,它们是SDI(数据输入),SDO(数据输出),SCK(时钟),CS(片选)。其中CS是控制芯片是否被选中的,也就是说只有片选信号为预先规定的使能信号时(高电位或低电位),对此芯片的操作才有效。这就允许在同一总线上连接多个SPI设备成为可能。

     接下来就负责通讯的3根线了。通讯是通过数据交换完成的,这里先要知道SPI是串行通讯协议,也就是说数据是一位一位的传输的。这就是SCK时钟线存在的原因,由SCK提供时钟脉冲,SDI,SDO则基于此脉冲完成数据传输。数据输出通过SDO线,数据在时钟上沿或下沿时改变,在紧接着的下沿或上沿被读取。完成一位数据传输,输入也使用同样原理。这样,在至少8次时钟信号的改变(上沿和下沿为一次),就可以完成8位数据的传输。

     要注意的是,SCK信号线只由主设备控制,从设备不能控制信号线。同样,在一个基于SPI的设备中,至少有一个主控设备。

     这样传输的特点:这样的传输方式有一个优点,与普通的串行通讯不同,普通的串行通讯一次连续传送至少8位数据,而SPI允许数据一位一位的传送,甚至允许暂停,因为SCK时钟线由主控设备控制,当没有时钟跳变时,从设备不采集或传送数据。也就是说,主设备通过对SCK时钟线的控制可以完成对通讯的控制。

     SPI还是一个数据交换协议:因为SPI的数据输入和输出线独立,所以允许同时完成数据的输入和输出。

     不同的SPI设备的实现方式不尽相同,主要是数据改变和采集的时间不同,在时钟信号上沿或下沿采集有不同定义,具体请参考相关器件的文档。

I2C

? 只要求两条总线线路:一条串行数据线SDA 一条串行时钟线SCL

? 每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机从机关系软件设定地址主机可以作为主机发送器或主机接收器

? 它是一个真正的多主机总线如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁,防止数据被破坏

? 串行的8 位双向数据传输位速率在标准模式下可达100kbit/s 快速模式下可达400kbit/s 高速模式下可达3.4Mbit/s

? 片上的滤波器可以滤去总线数据线上的毛刺波保证数据完整

? 连接到相同总线的IC 数量只受到总线的最大电容400pF 限制

UART

UART总线是异步串口,因此一般比前两种同步串口的结构要复杂很多,一般由波特率产生器(产生的波特率等于传输波特率的16倍)、UART接收器、UART发送器组成,硬件上由两根线,一根用于发送,一根用于接收。

     显然,如果用通用IO口模拟UART总线,则需一个输入口,一个输出口。

UART常用于控制计算机与串行设备的芯片。有一点要注意的是,它提供了RS-232C数据终端设备接口,这样计算机就可以和调制解调器或其它使用RS-232C接口的串行设备通信了。

明显可以看出,SPI和UART可以实现全双工,但I2C不行。

关键字:uart  spi  i2c总线 引用地址:uart,spi,i2c总线的区别

上一篇:CAN总线名词术语解释
下一篇:总线的驱动能力/负载能力

推荐阅读最新更新时间:2024-05-03 00:14

stm32f407硬件spi读写sst25vf闪存flash代码
void SPI_FLASH_Init(void) { GPIO_InitTypeDef GPIO_InitStructure; SPI_InitTypeDef SPI_InitStructure; NVIC_InitTypeDef NVIC_InitStructure; /* Enable the SPI periph */ RCC_APB2PeriphClockCmd(FLASH_SPI_CLK, ENABLE); /* Enable SCK, MOSI and MISO GPIO clocks */ RCC_AHB1PeriphClockCmd(FLASH_SPI_SCK_GPIO_CLK | FL
[单片机]
I2C总线浅谈之(四)--STM8的IIC驱动文件示例
本示例提供STM8S103F核心板的IIC驱动文件源代码,亲测没有任何问题,博主使用来驱动AT24C256和电子罗盘MMC5883MA,IIC通信速率100kHz,可以调整时序延时时间。 直接贴源码: IIC.h #ifndef _IIC_H #define _IIC_H #include iostm8s103F3.h #include type_def.h #define IIC_SCL PC_ODR_ODR5 //设置SCL为GPIO--PC5 #define IIC_SDA PC_ODR_ODR6 //设置SDA为GPIO--PC6 #define READ_SDA
[单片机]
STM8 UART 接收器
STM8 UART 接受器 UART可以接收8位或9位的数据字。如果M位置1,字长为9位,其中MSB存放在寄存器UART_CR1的R8位。 字符接收 在UART接收期间,数据的最低有效位首先从RX脚移进。在此模式里,UART_DR寄存器有一个缓冲器(TDR),位于内部总线和接收移位寄存器之间。 配置步骤: 1.编程UART_CR1的M位来定义字长。 2.在UART_CR3中编程停止位的位数。 3.按下列顺序编写波特率寄存器选择要求的波特率。 a) UART_BRR2 b) UART_BRR1 4.将UART_CR2的REN置1。这将激活接收器,使它开始寻找起始位。 当一字符被接收到时 RXNE位被置位。它表明移位寄存的
[单片机]
STM8 <font color='red'>UART</font> 接收器
LPC1768里的SPI驱动示例——基于SST25VF016B
这里有个坑,我的路虎开发板原理图上是AT45DB161这样的芯片,实际上丝印却是SST25VF016B,这两个器件都是存储设备,但是它们不是pin对pin的,这里大家需要注意下!!! /******************** (C) COPYRIGHT 2008 STMicroelectronics ******************** * File Name : spi_flash.h * Author : MCD Application Team * Version : V2.0.3 * Date : 09/22/2008 * Description : Header
[单片机]
发现STM32的SPI2有问题(invalid)
最近需要用到SPI1和SPI2协同工作,想弄个2位的SPI通信: 硬件的接线如下: SPI1.SCK - DEV.SCK SPI1.SCK - SPI2.SCK SPI1.MOSI - DEV.MOSI SPI1.MISO - DEV.MISO SPI2.MISO - DEV.MOSI SPI2.MOSI - DEV.MISO 将SPI1设置为Master方式,将SPI2设置为Slave。 设置为CPOL=0,CPHA=0(就是不传输的时候时钟是低电平,上升沿采样,下降沿更新数据)。 具体的配置就不贴了,在stm32fwlib的例子里面有。 注意:官方和网上能用的配置都是SPI1是Slave、SPI2为Master!接下来会说。
[单片机]
发现STM32的<font color='red'>SPI</font>2有问题(invalid)
SPI接口总线介绍
SPI 可以作为主、从器件工作,并可在同一总线上支持多个主、从器件。SPI 主要使用 3 个信号。 (1)主输出、从输入(MOSI) 用于主器件到从器件的串行数据传输。SPI 作为主器件,信号为输出;SPI 作为从器件, 信号为输入。当被配置为主器件时,MOSI 由移位寄存器的MSB 驱动。 (2)主输入、从输出(MISO) 用于从器件到主器件的串行数据传输。SPI 作为主器件,信号为输入;SPI 作为从器件, 信号为输出。当作为从器件工作时,MISO 由移位寄存器的MSB 驱动。 (3)串行时钟(CLK) 用于同步主器件和从器件之间在MOSI 和MISO 线上的串行数据传输。当SPI 作为主器 件时产生该信号。 SD卡总线
[模拟电子]
<font color='red'>SPI</font>接口总线介绍
分析一下UART IIC SPI驱动编写步骤
1,首先都是设置引脚的功能,把引脚设置到对应的模式 2,然后设置对应串口控制器的一些参数(也就寄存器的一些参数),完成对串口的基本设置,比如UART的波特率等等的。要配置哪些参数一般在对应外设的初始化结构体里都列了。所以这个步骤就变得很简单,就往对应外设的初始化结构体里面赋值就行了。而且我发现对引脚的设置其实也是对引脚的那个结构体的里面的参数赋值!!!!!都给它弄成结构体了,很方便!!!!!!!!!!所以整个过程就变成了往两个结构体里面填值就可以了,怪不得都不不需要变成用STM32cube选几下就可以了!!!!!!确实本质就是这样子的!!!!!!! 3,然后写发送或者接收。 我觉得主体可以分为以上三个部分。
[单片机]
分析一下<font color='red'>UART</font> IIC <font color='red'>SPI</font>驱动编写步骤
数字接口系列文章之SPI总线
数字接口系列文章之SPI总线  串行外设接口 (SPI) 总线是一种运行于全双工模式下的同步串行数据链路。用于在单个主节点和一个或多个从节点之间交换数据。SPI 总线实施简单,仅使用四条数据信号线和控制信号线(请参见图 1)。   图 1 基本的 SPI 总线   尽管表 1 中的引脚名称取自 MOTOROLA 公司的 SPI 标准,但特殊集成电路的 SPI 端口名称通常与图 1 中所标示的名称有所不同。   表 1 SPI 引脚名称分配   SPI 数据速率通常介于 1 到 70 MHz 之间,字节长度范围从 8 位和 12 位到这些数值的倍数位。   数据传输通常会包含一次数据交换。当主节点向从节点发送数据
[模拟电子]
数字接口系列文章之<font color='red'>SPI</font>总线
小广播
最新嵌入式文章
何立民专栏 单片机及嵌入式宝典

北京航空航天大学教授,20余年来致力于单片机与嵌入式系统推广工作。

换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved