新型改善液晶屏极化驱动电路方案

最新更新时间:2012-03-18来源: 电子发烧友关键字:液晶屏  驱动电路 手机看文章 扫描二维码
随时随地手机看文章

  引言

  一些面板由于设计和工艺等原因,存在着液晶分子特性易遭破坏等问题,所以在设计驱动液晶面板的驱动电路时需要增加特殊的功能电路,来实现液晶分子偏转方向的控制。本文介绍了一种控制液晶显示器像素电压的极性变换的方法,克服了现有技术中由于极性变换信号的单一极性变换规律使得液晶分子的特性容易遭到破坏的问题。

  1 系统总体框图

  

  本设计系统的基本单元由时序控制器(T- CON)、微控制单元(MCU)、极性保护电路、液晶面板构成。系统框图如图1 所示。时序控制器是驱动液晶面板的核心器件,它的主要功能是为TFT- LCD 面板中的栅极驱动器和源极驱动器提供必要的时序控制信号。它将接收前端送过来的LVDS(Low Voltage Differential Signaling,低压差分信号)信号转化为MINI- LVDS 信号,通过输出相应的时序控制信号来驱动液晶面板,使每一个像素点显示对应的像素电压。微控制器在本系统中起到计数控制作用,它通过计数T- CON 送过来的相应的控制信号,来实现POL 翻转信号翻转的时序控制。极性保护电路在本设计中的主要功能是考虑到如果MCU 不正常工作而导致POL 翻转信号不正常输出给液晶面板的情况下,通过控制STV 信号而使驱动液晶面板的信号没有输出,以达到防止屏在很短的时间内极化的作用。系统中还包括电源管理芯片,其主要作用是给T- CON、MCU 和保护电路提供正常工作所需的电源电压,电源管理单元使用的芯片是DC/DC 芯片和LDO(Low Dropout Regulator,低压差线性稳压器) 转换,DC/DC 芯片将输入的12V 电压经过BUCK 电路(降压式变换电路)转换成3.3V,LDO 将3.3V 电压线性转换为1.8V电压。

  2 整体设计

  2.1 时序控制器及输出波形介绍

  

  时序控制器输出的四个主要控制信号分别为STV、CPV、TP、POL 信号,如图2 所示。STV 信号是一帧图像的起始信号;CPV 信号是T- CON 输出给栅极驱动器的时钟信号,通过移位寄存器后依序输出给每一行的薄膜晶体管(thin filmtransistor,TFT), 来控制TFT 的开启与关闭;TP信号为T- CON 输出给源极驱动器的数据源行锁存信号,当某一行的TFT 开启时,源极驱动器将输入的数字信号转换为模拟信号输出给TFT的源极端,TP 上升沿锁存数据,下降沿输出数据;POL 信号为控制像素电压的极性翻转信号,本设计采用的是Z INVERSION 的极性反转方式,由于特殊的面板架构(即相邻两列相同极性的像素点都是连在一起的),使它的极性反转频率等于帧频,这样可以大大降低POL 信号的频率,同时也相应地降低了源极驱动器的功耗和温度。在一帧图像到来之前,POL 信号会根据已经设定的极性翻转方式来控制这一帧图像像素电压的极性。以60Hz 1,366×768 分辨率的液晶面板为例, 图2 是这几个控制信号的时序关系图,由图中可以看出,POL 翻转信号发生在上一帧的BLANK 区域(无效数据区域),在下一帧的STV 来临之前已经翻转完毕,距离STV 上升沿有23.6μs 的时间,也就是说某一帧的像素电压的极性在这一帧起始的时候已经设定好了。在这一帧图像要传输数据时,首先STV 信号来一个脉冲宽度为21μs 的高电平, 后延迟4.8μs的时间CPV 开始动作,将第一行的所有TFT 打开,再延迟4.4μs 的时间第一个TP 开始动作,TP 上升沿将数据锁存,TP 高电平的时间为2μs,在下降沿的时刻将第一行的数据输出给TFT 的源极端来显示第一行的数据。依照此时序关系,待这一帧数据全部显示完需要768 个TP信号,60Hz 面板前端设定的TP 数为789 个,从769 到789 个TP 这段时间为BLANK 区域,该时间里的TP 都为无效的TP,也就是说这段时间内没有数据DATA 送入。

  2.2 MCU 及反转机制

  本设计中采用8 位C- MOS 闪存单片机,该单片机有5 个I/O 口, 分别为GP0、GP1、GP2、GP4、GP5,以及一个仅用作输入用的接口GP3,通过单片机编程可以实现POL 信号的翻转。

  

 

  MCU 管脚定义分别为1- VDD、2- TP、3- POL_IN、4- STV、5- 默认低电平、6- POL_OUT、7- 28s 翻转触发电平、8- VSS, 信号输入端分别接一个100Ω 的电阻作为MCU I/O 口的保护电阻。

  T- CON 送出来的TP、POL_IN、STV 信号作为输入信号,分别输入到MCU 的2、3、4 引脚作为计数信号,当MCU 正常工作时设定5 脚输出为低电平,6 脚是经过反转后的POL 输出信号。为了在每隔28s 的时间内能够触发到POL 翻转信号,所以设定一个触发电平,当28s 反转的时刻,该电平会发生由高到底或由低到高的电平翻转,易于触发。实现28s 翻转的机制是通过MCU 计数STV 和TP 个数来实现的,以60Hz 来说,1s 是60帧图面,一帧图像有一个STV,所以28s 的时间有28×60=1,680 个STV 信号,计数的机制就是通过MCU 计数1,679 个STV 后,然后计数780 个TP 后将POL 翻转。由于MCU 的指令周期,所以需要限定POL 反转结束的时刻要落在当前图像帧有效的数据源行锁存信号结束之后,以及下一图像帧的起始信号之前。

  

  如图4 所示,1 为触发电平,2 为POL 翻转后的信号,3 为STV 信号,4 为TP 信号,从图中可以看出,POL 翻转脉冲结束时刻确实发生在下一帧的STV 信号来之前,这个翻转脉冲的宽度大约是150μs,MCU 从检测到第1,679 个STV 和780个TP 信号后计数到POL 信号反转,由于MCU寻址语句的执行需要3 个TP 的时间,所以在翻转脉冲来之前有3 个TP 的时间。由图中可以看出,POL 翻转前后的电平是一样的,正常情况时下一帧POL 信号应该是高电平,但是图中经过反转后POL 仍然是低电平,也就是说POL 经过了一个电平的翻转后将POL_OUT 信号与POL_IN信号反向输出, 实现了每隔28s 的时间将POL_OUT 与POL_IN 做一次反向输出的功能。

    2.3 POL_IN 与POL_OUT 波形

  

 

  如图5 所示,1 为POL_IN 信号,2 为POL_OUT 信号,3 为翻转触发电平,常规的POL信号是标准高低电平的方波信号,每个高低电平分别控制一帧图像的像素电压极性,高电平和低电平的图像帧像素电压极性不同。从图中可以看出,MCU 将输入的POL_IN 信号进行了反转,在翻转脉冲之前28s 时间里POL_OUT 信号和POL_IN 信号是同步的,翻转脉冲之后的28s 时间里POL_OUT 和POL_IN 是反向的,也就是说每隔28s 的时间,MCU 将POL_IN 信号做一次反向输出,这样做是为了防止POL 极性变换信号的单一变换规律而导致液晶分子的特性遭到破坏发生极化现象。

  2.4 保护电路工作原理

  极性保护单元的电路结构图如图3 所示,单片机的引脚5 通过阻值为4.7KΩ 的电阻R6 与NPN 三级管的基极端电连接,并且通过阻值为4.7KΩ 的电阻R5 与电压端(3.3V)电连接。NPN三极管的集电极端通过阻值为4.7KΩ 的电阻R7 与电压端(3.3V)电连接,并且时序控制器输出的STV 信号输入到NPN 三极管的集电极端。

  NPN 三极管的发射极接地。保护电路工作的原理是利用一个NPN 型三极管来控制图像的起始信号STV 信号来达到保护液晶屏的目的,当MCU 正常工作时,编程输出第5 脚为低电平,三极管截止,STV 信号只是加了一个上拉电阻到3.3V,增加了STV 信号的驱动电流,不影响信号图像的正常输出。当MCU 一旦不正常工作,第5 脚默认为高阻态, 三极管的基极接两个4.7KΩ 的电阻到3.3V, 三极管基极电压大于0.7V 正常导通,接在集电极端的STV 信号被强制拉到地,使画面没有输出,可以保护液晶屏显示因为没有POL 信号的输出而在很短的时间里发生极化的现象。

  3 结论

  应用MCU 搭建翻转电路实现了控制液晶分子像素电压极性的功能,该设计具有系统简单、低成本、低损耗和高效率等优点,已成功解决了由于极性控制信号单一翻转产生的极化问题。

关键字:液晶屏  驱动电路 编辑:探路者 引用地址:新型改善液晶屏极化驱动电路方案

上一篇:“电池问题”不是问题,“混合式超级电容器”
下一篇:高性能的线性锂电池充电管理芯片的应用

推荐阅读最新更新时间:2023-10-18 16:32

光开关驱动电路及其原理介绍
    电路的功能     光开关作为检测有无遮档物体的传感器,在工厂的自动生产线上被广泛应用,几乎所有这种产品都是用小型元件组装成的,其输出为继电器接点式或开路集电极式,本电路则是构成简单、工作稳定的光开关驱动电路。     电路工作原理     为了使发光二极管有大的峰值电流流过,采用占分比很小的脉冲电流让发光二极管发光。电路采用了NE555IC,R2选择了比较低的阻值,可以产生RW=0.7C1.R2的脉冲,其同期由R1决定,一般取1MS左右。     本电路的特点是TR2截止时,C2经由R5充电,TR2导通时,C2放电,使LED1获得大电流,即使TR2损坏造成短路,LED也能受到保护。此外,
[电源管理]
光开关<font color='red'>驱动电路</font>及其原理介绍
OLED显示屏驱动电路的设计
1. 引言 目前,在光电显示领域,CRT已经走向末路,LCD正处于发展的顶峰时期,与技术成熟、产业链完善、规模庞大的LCD产业相比,OLED还处于发展的初级阶段,它的优势可以从技术与产业两方面来看,在技术上:OLED很薄、很轻,厚度可以做到比LCD薄;由于是不需要背光源的主动发光,所以OLED视角很广,一般认为接近180度;并且具有省电、耐低温特性,在低温下的性能远远优于LCD;响应速度快,图像刷新率几乎是LCD的100至1000倍;除了图像质量的根本性改进外,还具有抗震性好这一特性,这对于便携式设备而言十分有利;不仅如此,由于可弯曲的塑料也可以用作基质材料,所以OLED显示屏的外形不受限制,可以是任何形状,可以放到任意物体的表
[电源管理]
OLED显示屏<font color='red'>驱动电路</font>的设计
一种全彩LED驱动电路的设计方案
  发光二极管(Light Emitting Diode,LED)是一种能够将电能转化为可见光的固态的半导体器件,它可以直接把电转化为光,随着LED的应用越来越广,对于其驱动电路要求也越来越高。现在大多数场合需要采用恒流输出的开关电源,对于全彩LED灯而言,采用传统的RGB分别驱动在面对既要调色温又要调节亮度时候会有明显的缺陷,基于这点,通过改良HSI模型,设计了这款适合与全彩LED的驱动电路。传统的RGB模型需要R,G,B分别调节,而HSI模型主要将亮度和色度分开,通过H,S,I三个参数分别调节,H(色度),S(饱和度),I(亮度)。HIS模型下的驱动电路通过单片机控制总线驱动电流来限定I参数(亮度),通过R,G,B三端反馈调节
[电源管理]
一种全彩LED<font color='red'>驱动电路</font>的设计方案
驱动电路IR2110的特性及应用
驱动电路IR2110的特性及应用 功率变换装置中的功率开关器件,根据主电路的不同,一般可采用直接驱动和隔离驱动两种方式。其中隔离驱动可分为电磁隔离和光电隔离两种。光电隔离具有体积小,结构简单等优点,但同时存在共模抑制能力差,传输速度慢的缺点。快速光耦的速度也仅有几十kHz。电磁隔离用脉冲变压器作为隔离元件,具有响应速度快(脉冲的前沿和后沿),原副边的绝缘强度高,dv/dt共模干扰抑制能力强等特点。但信号的最大传输宽度有受磁饱和特性的限制,因而信号的顶部不易传输。而且最大占空比被限制在50%。同时信号的最小宽度也要受磁化电流的限制。同时脉冲变压器体积也大,而且笨重,工艺复杂。 凡是隔离驱动方式,每路驱动都需要一组辅助电源,
[模拟电子]
<font color='red'>驱动电路</font>IR2110的特性及应用
一种典型的LED照明驱动电路失效机理的探讨
1.引言   近几年从事LED制造、和研发的人员大大增加。LED企业亦如雨后春笋般成长。由于从事LED驱动研发的企业和人众多,其技术水平参差不齐,研发出来的LED驱动电路质量好坏不一。导致LED灯具的失效时常发生,阻碍了LED照明的时常推广。LED灯具失效一是来源于电源和驱动的失效,二是来源于LED器件本身的失效。本文试着从实际的LED电源驱动电路这一方面,分析其电路的工作原理,然后试着从在不同环境下的LED驱动电路下,分析各种工作敏感参数对失效的影响,来进行失效模式的分析,最后,通过仿真来验证结果。并从理论上给出失效的解决方案。   2.LED驱动电路原理   LED是一种半导体材料制造而成发光二极管,只能够单向导通,而且
[电源管理]
一种典型的LED照明<font color='red'>驱动电路</font>失效机理的探讨
建筑LED与室内LED的驱动电路
  LED效率高于白炽灯,寿命长100倍,但它们需要专门的电子驱动电路,以避免出现过载的情况。主要的工作参数相对简单:保持通过LED电流的恒定,并低于规定的最大值。   传统电源都有精准的电压输出,但电流是变化的。将LED串接一只电阻可以控制电流。这种设计假定了LED上的已知电压不会随LED的温度而变化。不幸的是,LED的正向电压实际上会随温度而改变。LED制造商通常按正向电压对自己的器件作筛选分类,让灯具制造商制造的产品在一个固定温度下满足这个正向电压。LED制造商采用未经筛选的LED做电路可以节省时间,并获得廉价的LED。LED还有负的正向电压-温度系数,使驱动电路进入热击穿状态,因此要求设计者在电路设计中采取保护措施。
[电源管理]
建筑LED与室内LED的<font color='red'>驱动电路</font>
基于VerilogHDL的CMOS图像敏感器驱动电路设计
       CMOS图像敏感器是近年来兴起的一类固态图像传感器。CMOS图像敏感器具有低成本、低功耗(是CCD耗的1/1000~1/100)、简单的数字接口、随机访问、运行简易(单一的CMOS兼容电池供给)、高速率(可大于1000帧/秒)、体积小以及通过片上信号处理电路可以实现智能处理功能等特点而得到广泛应用。有些CMOS图像敏感器具有标准的I2C总线接口,可方便应用到系统中。有些没有这类总线接口电路的专用CMOS图像敏感器需要增加外部驱动电路。由于CMOS敏感器的驱动信号绝大部分是数字信号,因此可采用FPCA通过Verilog HDL语言编程产生驱动时序信号。Verilog HDL语言是IEEE标准的用于逻辑设计的硬件描述语言
[嵌入式]
LED驱动电路简介
  LED 驱动电路除了要满足安全要求外,另外的基本功能应有两个方面,一是尽可能保持恒流特性,尤其在电源电压发生±15%的变动时,仍应能保持输出电流在±10%的范围内变动。二是驱动电路应保持较低的自身功耗,这样才能使LED 的系统效率保持在较高水平。   传统的低效率电路: 图1   图1 是传统的低效率电路,电网电源通过降压变压器降压;桥式整流滤波后,通过电阻限流来使3 个LED 稳定工作,这种电路的致命缺点是:电阻R 的存在是必须的,R 上的有功损耗直接影响了系统的效率,当R 分压较小时,R 的压降占总输出电压的40%,输出电路在R 上的有功损耗已经占40%,再加上变压器损耗,系统效率小于50%。当电源电压在±10
[电源管理]
LED<font color='red'>驱动电路</font>简介
小广播
最新电源管理文章
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved