功率因数校正技术的新型控制策略综述

最新更新时间:2012-04-20来源: 21IC关键字:功率因数  校正技术  控制策略 手机看文章 扫描二维码
随时随地手机看文章

1  引言

PFC电路在提高电力电子装置网侧功率因数、降低电网谐波污染方面起着很重要的作用。随着PFC技术应用的普及,PFC电路拓扑日渐成熟。关于PFC控制系统与控制策略的研究目前仍然十分活跃,这从侧面反映出该领域还有许多问题尚待解决[1]。PFC技术的每一种控制策略都有其优缺点,本节简单总结了PFC技术的经典控制策略,对比分析了几种新型控制策略的优缺点,指出了PFC控制技术的发展趋势。

2  PFC整流器的经典控制策略

电力电子电路的六种基本拓扑结构(Buck、Boost、Buck-boost、Flyback、Sepic、Cuk)原则上都可以构成PFC,但因Boost电路的独特优点,在实际中应用最多。PFC的控制策略按照输入电感电流是否连续,PFC分为不连续导通模式(DCM)和连续导通模式(CCM)。DCM的控制可以采用恒频、变频、等面积等多种方式。CCM模式根据是否直接选取瞬态电感电流作为反馈和被控制量,有直接电流控制和间接电流控制之分。直接电流控制有峰值电流控制(PCMC)、滞环电流控制(HCC)、平均电流控制(ACMC)、预测瞬态电流控(PICC)、线性峰值电流控制(LPCM)、非线性载波控制(NLC)等方式。电流的控制也

可以通过控制整流桥输入端电压的方式间接实现,称为间接电流控制或电压控制[2]。

2.2.1  DCM控制模式

DCM控制又称电压跟踪方法,它是PFC中简单而实用的一种控制方式, 应用较为广泛。DCM控制模式的特点:(1)、输入电流自动跟踪电压并保持较小的电流畸变率;(2)、功率管实现零电流开通(ZCS)且不承受二极管的反向恢复电流;(3)、输入输出电流纹波较大,对滤波电路要求较高;(4)、峰值电流远高于平均电流,器件承受较大的应力;(5)、单相PFC功率一般小于200W,三相PFC功率一般小于10kW。

2.2.2 CCM控制模式

CCM相对DCM其优点为:(1)、输入和输出电流纹波小、THD和EMI小、滤波容易;(2)、RMS电流小、器件导通损耗小;(3)、适用于大功率应用场合。CCM模式下有直接电流控制与间接电流控制两种方式。直接电流控制的优点是电流瞬态特性好,自身具有过流保护能力,但需要检测瞬态电流,控制电路复杂。间接电流控制的优点是结构简单、开关机理清晰。

3  PFC整流器的新型控制策略

3.1  单周控制技术

单周期控制技术(One-Cycle Control)[3]是九十年代初由美国加州大学的Keyue M Smedley提出的,它是一种不需要乘法器的新颖控制方法,将这种控制方法应用于功率因数校正是近年来一种新的尝试。单周控制是一种非线性控制技术,它同时具有调制和控制的双重性,通过复位开关、积分器、触发电路、比较器达到跟踪指令信号的目的。它的基本思想是在每一个开关周期内使受控量的平均值恰好等于或者正比于控制参考量,单周期控制术在控制回路中不需要误差综合,它能在一个周期内自动消除稳态、瞬态误差,前一周期的误差不会带到下一周期,同时单周期控制技术还具有优化系统响应、开关频率恒定、减小畸变、抑制电源干扰和易于实现等优点。这种控制技术可广泛应用于非线性系统的场合,现已在DC-DC变换器、开关功率放大器、有源电力滤波器、静止无功发生器以及单相、三相功率因数校正等方面得到大量应用。

将单周控制的基本原理应用于各种电流控制上,就可以得到电荷控制(Charge Control),准电荷控制(Quasi-Charge Control),非线性载波控制(Nonlinear carrier Control) 和输入电流整形技术(Input Current Control)等功率因数校正的新型控制技术。

从形式上看电荷控制是电流型的单周期控制,其控制思想是控制开关的电流量,使之在一个周期内达到期望值。

准电荷控制也是一种电流型的单周控制。准电荷控制是在电荷控制的基础上,用RC网络代替电荷控制中电路中的C网络。

非线性载波控制的控制电流可为开关电流、二极管电流或电感电流,从电路的拓扑结构上讲非线性载波控制技术是在电荷控制的基础上增加了一个外加的非线性补偿,提高了系统的稳定性。在非线性载波控制中当电路工作在电流连续状态下,系统就是稳定的,而电路工作在断续状态下,系统是小信号稳定的。另外非线性载波控制工作在断续条件下会产生输入电流的畸变。

输入电流整形技术检测二极管上的电流,从形式上说是一种类似于非线性载波控制的控制方案,从控制的实质上讲它是平均电流控制的一种反用。

3.2  空间矢量调制

空间矢量调制(Space Vector Modulation)[4]是80年代中后期发展起来的,最初的应用是使电机获得圆形的旋转磁场,称为“磁链跟踪”。目前,空间矢量调制的概念远远超出了电机调速的范畴,成为与SPWM相并行的一种PWM调制技术。空间矢量调制也是矩阵式变换器的最佳调制方式,三相功率因数校正电路的数字化实现也可用此方式。在模拟控制中,用abc三相对称坐标系,控制量是分段正弦的;在数字化实现时,用同步旋转的d-q正交坐标系,此时,控制量在稳态时为常量,容易保证好的稳态特性。模拟控制时,控制变量是时变的,在电压、电流过零时,可能出现不连续,并且由于模拟控制器的工频增益有限,电流畸变通常比数字控制大。数字控制的带宽主要受运算速度和采样延迟的限制。随着微控制器的性能价格比不断提高,基于SVM的数字化实现会越来越具吸引力。空间矢量在理论分析上也有优点,用其描述三相电路的状态轨迹,非常直观。

3.3  无差拍控制

无差拍控制(Deadbeat control)[5]是一种在电流滞环比较控制技术基础上发展起来的全数字化的控制技术。它的基本思想是将输出参数等间隔的划分为若干个取样周期。根据电路在每一取样周期的起始值,预测在关于取样周期对称的方波脉冲作用下某电路变量在取样周期末尾时的值。适当控制方波脉冲的极性与宽度,就能使输出波形与要求的参数波形重合。不断调整每一取样周期内方波脉冲的极性与宽度,就能获得波形失真小的输出。

无差拍控制的最显著的优点就是数学推导严密、跟踪无过冲、系统动态响应快、易于计算机执行等,缺点是它要求建立精确的数学模型,当理想模型与实际对象有差异时,剧烈的控制动作会引起输出电压的振荡,不利于系统稳定运行。随着数字信号处理单片机(DSP)应用的不断普及,这是一种很有前途的控制方法

基于空间电压矢量PWM的电流无差拍控制方法,开关频率恒定,调节性能良好,代表了目前国际上PFC技术的先进水平。

3.4   滑模变结构控制

滑模变结构控制[6]适应了电力电子变换器的开关非线性特性,能够根据变换器运行状态,有效的控制变换器工作状态的切换,实现变换器的控制目标,动态性能好且鲁棒性强,这样,滑模变结构控制就能很容易地应用于整流器、逆变器等相关领域的应用研究,从而最有望成为电力电子变换器实用的控制技术。

变流器的时变参数问题是人们一直努力解决的问题。考虑到开关变换器的开关切换动作与变结构系统的运动点沿切换面高频切换有动作上的对应关系。因而可以考虑用滑模变结构这种方法来控制变流器。

在整流器的功率因数校正系统中,输入电流的稳态特性和输出电压暂态特性之间存在着矛盾的关系,应用滑模变结构控制方法,可以在输入电流的稳态特性和输出电压暂态特性之间进行协调,使输入电流满足有关标准的前题下,尽可能地提高输出电压动态响应。

3.5 基于Lyapunov非线性大信号方法控制

传统控制方法的数学建模一般是基于系统的小信号线性化处理,这种方法的缺点是对系统的大信号扰动不能保证其稳定性。基于这种考虑,文献[7]提出了用大信号方法直接分析这种非线性系统。仿真和实验结果表明,系统对大信号扰动具有很强的鲁棒性。

3.6  dqo变换控制

dqo变换控制[8]是根据瞬时无功功率理论,将电源电流分解到dqo坐标系下,得到两个直流量Id 、Iq。指令电流Id*、Iq*由电压控制环给出,由于参考值和反馈值在稳态时都是直流信号,所以可以做到无稳态误差跟踪,这种方法的控制精度高,但控制中涉及的计算复杂,随着高性能的单片机及专用的矢量转换芯片的出现,其实现也是可行的。

4   控制策略的总结与展望

DCM控制尽管简单,但由于器件承受较大的开关应力。限制了其功率应用范围。CCM控制中,直接电流控制应是发展的主流,它适用于对系统性能指标和快速性要求较高的大功率场合。CCM模式下的电流控制需要乘法器和对输入电压、输入电流进行检测,控制电路复杂且成本高,乘法器的非线性失真也增加了输入电流的谐波含量。因此,不带乘法器的简化控制成为PFC研究的一个热点。

寻求更加简化的控制策略、降低PFC成本、减小THD和EMI、降低器件开关应力、提高整机效率仍然是今后PFC控制策略的发展趋势。中大功率的电力电子设备在电网中占有很大比重,因此三相PFC应是PFC研究的重心。随着三相PFC整机成本的提高和开关频率的降低,依托高速的数字处理器,数字控制成为发展的主流。由于各种控制策略都有优缺点,将各种控制策略合理搭配,取长补短,可以收到理想的控制效果,这也是控制技术发展的一个方向。

与现代控制理论相关的控制方法如状态反馈控制(极点配置)、二次型最优控制、非线性状态反馈、模糊控制、神经网络控制等,都可以用在PFC电路中。但这些方法还不成熟,处于积极的探索之中。基于大功率电子设备的要求,目前多电平变换器和各种简单拓扑的串联、并联等拓扑相继提出,对于这些电路的控制,除采用现有的控制策略外,还尝试发展更有针对性的控制技术。

参考文献

[1]        张厚升.基于单周期控制的高功率因数整流器的研究[D].西北工业大学[硕士学位论文].2005.

[2]        毛鸿, 吴兆麟. 有源功率因数校正器的控制策略综述. 电力电子技术, 2000,(1):58-61.

[3]        Smedley K M, Cuk S. One-cycle control of switching converter, PESC, 1991: 888~896.

[4]        Mao Hengchun, Fered C L. Review of power factor correctiontechniques. IPEMC’97, Hangzhou, 1997:9-20.

[5]        李玉梅, 马伟明. 无差拍控制在串联电力有源滤波器中的应用.电力系统自动化, 2001,25(8): 28-30.

[6]        Casini D, Marchesoni M. Sliding mode multilevel control fox improved    performances in power conditioning systems. IEEE Trans on PE, 1995,10(4): 453-463.

[7]        Komurcugil H, Kukrer Osman. Lyapunor Based control for three-phase PWM AC/ DC voltage-source converters. IEEE Trans on Power Electron, 1998, 13(5): 801-813.

[8]        Chun T Rim,Hu, Gyu H Cho. Transformers as equivalent circuits for switches: general proofs and D-Q transformation-based analysis. IEEE Trans. on Industry Applications. 1990, 26(4): 777~785.

关键字:功率因数  校正技术  控制策略 编辑:探路者 引用地址:功率因数校正技术的新型控制策略综述

上一篇:适合通信系统的低压、大电流电源的现状及展望
下一篇:投影机技术的“实用”性分析与应用

推荐阅读最新更新时间:2023-10-18 16:39

高频脉冲交流环节逆变器电路拓扑族及其双极性移相控制策略研究
0    引言     传统的逆变技术虽然成熟可靠、应用广泛,但存在体积大且笨重、音频噪音大、系统动态特性差等缺点 。用高频变压器替代传统逆变器中的工频变压器,克服了传统逆变器的缺点,显著提高了逆变器的特性。高频脉冲交流环节逆变器 具有双向功率流、两级功率变换(DC/HFAC/LFAC)、变换效率和可靠性高等特点,但存在周波变换器器件换流时的电压过冲现象等缺点,通常需要采用缓冲电路或有源电压箝位电路来吸收存储在漏感中的能量,从而降低了变换效率或增添了电路的复杂性。     因此,在不增加电路拓扑复杂性的前提下,如何解决高频脉冲交流环节逆变器固有的电压过冲现象和实现周波变换器的软换流,是这类逆变器的研究重点。 1 高频脉
[嵌入式]
基于MATLAB的高功率因数整流器仿真实验平台
  1 概述   简单系统可直接建立模型,并分析模块之间的相互关系以及模块输入输出关系。但对相对复杂的系统,Simulink包含多个模块,使得各个模块之间的相互关系非常复杂,不利于分析。为此,可将具有一定功能的模块群进行封装,用户不必了解其内部结构,只需了解其功能和输入参数即可。而且每个模块可移植。仿真实验平台封装的主要模块包括:典型的单相整流器主电路,三相全控桥整流器主电路,检测模块(坐标变换),脉冲产生模块,控制模块,测量模块等。通过仿真得到三相可逆PWM整流器的主电路电感值、开关频率等参数,并影响到输入电流总谐波失真(THD)、电源功率因数以及系统输出直流电压,从而为实际设计确定主电路的参数提供可靠依据,对三相可逆PWM
[电源管理]
功率因数、无频闪LED恒流驱动芯片
  一、隔离式、无频闪高功率因数驱动芯片SM7650   1.1 概述   SM7650是一款应用于中功率的高功率因数、高精度、高效率的原边反馈LED恒流驱动控制芯片。适用于90Vac~264Vac输入电压范围,系统的功率因数大于0.98,效率高于85%,恒流精度小于±3%。同时,输出端无工频闪烁,THD 10%。   具有VDD欠压保护,GATE输出钳位以及输出过压、开路、短路等保护功能。可通过EFT、雷击、浪涌等可靠性测试,可通过3C、UL、CE等认证标准。   1.2特点:   l 适用于两级、高功率因数隔离方案;   l 系统输出电流无工频闪烁;   l 功率因数大于0.98;   l 效率可达85%以上;   l 恒流精
[电源管理]
新一代UPS负载功率因数的演变
UPS为数据中心的服务器、路由器、存储器提供不间断的电源保护,而计算机设备是UPS的重要负载之一。大多数传统UPS的负载功率因数为0.8。为了适应负载的变化,新一代UPS的负载功率因数正逐步提升到0.9,甚至到1。 随着全球节能和低碳经济的到来,计算机负载内部电源已经发生了变化,十年前的计算机电源拓扑如图1所示。 图1  传统计算机电源拓扑图 这是一个典型的全桥整流电路图,交流电通过四个二极管组成的一个全桥整流,直流侧电容起到平波作用,为计算机负载提供所需的直流能量。这样的拓扑结构造价较低,功率因数只有0.7~0.8,电流谐波高达60%,产生大量的无功损耗和电网污染,不利于设备节能,也不符合绿色电源的需求。其电压、
[电源管理]
新一代UPS负载<font color='red'>功率因数</font>的演变
同时实现功率因数改善与高效率的ROHM最新AC/DC电源技术
在电子设备开发中,电源的高效化已经逐年成为重要主题。另外,不仅是面临电力能源问题的日本,在全世界的发电和输电相关的电力公司,功率因数改善设备的普及与高效率同样是重中之重。在此介绍同时实现了设备工作时的功率因数改善与待机时的高效率的 AC/DC 电源技术。 1. 功率因数与功率因数改善电路(PFC:Power factor correction) 功率因数是指是否将电力公司生产的电力毫无损耗地输送到电子设备的数值;效率是指是否将该电力毫无损耗地 转换的数值。当交流电力的电压与电流的相位差为φ时,按功率因数=COSφ求得功率因数,当电压与电流没有相位差,即正弦波时功率因数为1。 简单地说,单纯的电阻负载时,电压与电流波形不发生相位
[电源管理]
同时实现<font color='red'>功率因数</font>改善与高效率的ROHM最新AC/DC电源<font color='red'>技术</font>
ARC功率因数自动补偿控制仪的原理及其应用
随着现代工业的发展,电网中使用的感性负载也愈来愈多,如感应式电动机、变压器等。这些设备在工作时不但要消耗有功功率,同时需要电网向其提供相应的无功功率,造成电网的功率因数偏低。在电网中并联电容器可以减少电网向感性负载提供的无功功率,从而降低输电线路因输送无功功率造成的输电损耗,改善电网的运行条件,因此功率因数补偿控制器一直有着广阔的应用市场。本文所介绍的功率因数补偿控制器符合JB/T9663-1999国家标准,主要功能有: (1)相序自动识别 (2)电压、电流、功率因数采样与显示 (3)过压解除、欠流封锁,从而保护电容器及避免循环投切 (4)采用先投入的先切除,先切除的先投入的原则,对补偿电容实行循环投切
[单片机]
ARC<font color='red'>功率因数</font>自动补偿控制仪的原理及其应用
按有源功率因数校正电路分类
  (1)降压式,其特点是:噪声大,滤波困难,功率开关管上电压应力大,控制驱动电平浮动,故很少被采用。   (2)升/降压式,其特点是需用两个功率开关管,有一个功率开关管的驱动控制信号浮动,电路复杂,应用较少。   (3)反激式,输出与输入隔离,输出电压可以任意选择,采用简单电压型控制,适用于150W以下功率的应用场合。   (4)升压式(Boost),其特点是:简单电流型控制,PF高,总谐波失真(THD)小,效率高,但是输出电压高于输人电压,其典型电路如图1所示。适用于75~2000 W功率范围的应用场合,应用范围最广泛。其优点是:电路中的电感适用于电流型控制;由于升压型APFC的预调整作用,在输出电容器上保持高电压
[电源管理]
按有源<font color='red'>功率因数</font><font color='red'>校正</font>电路分类
基于MATLAB的有源功率因数校正器设计
1.引言 当前单相APFC技术已完全成熟,应用到开关电源中可提高功率因数至o.98以上,成为许多开关电源的必备前级,应用日益广泛。快速高效地设计出满足系统要求的APFC已成为工程技术人员必须面对的问题。MATLAB强大的信号分析处理能力对高效地设计APFC及整定各个环节的参数带来了极大便利。本文采用MATLAB设计实现了一个3KW的功率因数校正器,给出了SI MULINK仿真电路及波形,并成功应用于研发的Xray电源系统中。 2.APFC控制原理简述 传统的功率因数校正器,主电路一般采用B00ST升压电路,控制策略采用平均电流法控制。其基本控制思想为:检测电路平电流,使之跟随网压,与网压同波形、同相位从而实现输入
[电源管理]
小广播
最新电源管理文章
换一换 更多 相关热搜器件
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved