理解功率MOSFET的RDS(ON)温度系数特性

最新更新时间:2013-06-17来源: EDN关键字:MOSFET  RDS  温度系数 手机看文章 扫描二维码
随时随地手机看文章
通常,许多资料和教材都认为,MOSFET的导通电阻具有正的温度系数,因此可以并联工作。当其中一个并联的MOSFET的温度上升时,具有正的温度系数导通电阻也增加,因此流过的电流减小,温度降低,从而实现自动的均流达到平衡。同样对于一个功率MOSFET器件,在其内部也是有许多小晶胞并联而成,晶胞的导通电阻具有正的温度系数,因此并联工作没有问题。但是,当深入理解功率MOSFET的传输特性和温度对其传输特性的影响,以及各个晶胞单元等效电路模型,就会发现,上述的理论只有在MOSFET进入稳态导通的状态下才能成立,而在开关转化的瞬态过程中,上述理论并不成立,因此在实际的应用中会产生一些问题,本文将详细地论述这些问题,以纠正传统认识的局限性和片面性。

功率MOSFET传输特征

三极管有三个工作区:截止区、放大区和饱和区,而MOSFET对应的是关断区、饱和区和线性区。MOSFET的饱和区对应着三极管的放大区,而MOSFET的线性区对应着三极管的饱和区。MOSFET线性区也叫三极区或可变电阻区,在这个区域,MOSFET基本上完全导通。

当MOSFET工作在饱和区时,MOSFET具有信号放大功能,栅极的电压和漏极的电流基于其跨导保持一定的约束关系。栅极的电压和漏极的电流的关系就是MOSFET的传输特性。


其中,μn为反型层中电子的迁移率,COX为氧化物介电常数与氧化物厚度比值,W和L分别为沟道宽度和长度。

温度对功率MOSFET传输特征影响

在MOSFET的数据表中,通常可以找到它的典型的传输特性。注意到25℃和175℃两条曲线有一个交点,此交点对应着相应的VGS电压和ID电流值。若称这个交点的VGS为转折电压,可以看到:在VGS转折电压的左下部分曲线,VGS电压一定时,温度越高,所流过的电流越大,温度和电流形成正反馈,即MOSFET的RDS(ON)为负温度系数,可以将这个区域称为RDS(ON)的负温度系数区域。

图1 MOSFET转移特性


而在VGS转折电压的右上部分曲线,VGS电压一定时,温度越高,所流过的电流越小,温度和电流形成负反馈,即MOSFET的RDS(ON)为正温度系数,可以将这个区域称为RDS(ON)正温度系数区域。

功率MOSFET内部晶胞的等效模型

在功率MOSFET的内部,由许多单元,即小的MOSFET晶胞并联组成,在单位的面积上,并联的MOSFET晶胞越多,MOSFET的导通电阻RDS(ON)就越小。同样的,晶元的面积越大,那么生产的MOSFET晶胞也就越多,MOSFET的导通电阻RDS(ON)也就越小。所有单元的G极和S极由内部金属导体连接汇集在晶元的某一个位置,然后由导线引出到管脚,这样G极在晶元汇集处为参考点,其到各个晶胞单元的电阻并不完全一致,离汇集点越远的单元,G极的等效串联电阻就越大。

正是由于串联等效的栅极和源极电阻的分压作用,造成晶胞单元的VGS的电压不一致,从而导致各个晶胞单元电流不一致。在MOSFET开通的过程中,由于栅极电容的影响,会加剧各个晶胞单元电流不一致。

功率MOSFET开关瞬态过程中晶胞的热不平衡

从图2可以看出:在开通的过程中,漏极的电流ID在逐渐增大,离栅极管脚距离近的晶胞单元的电压大于离栅极管脚距离远的晶胞单元的电压,即VG1>VG2>VG3>…,VGS电压高的单元,也就是离栅极管脚距离近的晶胞单元,流过的电流大,而离栅极管脚距离较远的晶胞单元,流过的电流小,距离最远地方的晶胞甚至可能还没有导通,因而没有电流流过。电流大的晶胞单元,它们的温度升高。

图2 功率MOSFET的内部等效模型


由于在开通的过程中VGS的电压逐渐增大到驱动电压,VGS的电压穿越RDS(ON)的负温度系数区域,此时,那些温度越高的晶胞单元,由于正反馈的作用,所流过的电流进一步加大,晶胞单元温度又进一步上升。如果VGS在RDS(ON)的负温度系数区域工作或停留的时间越大,那么这些晶胞单元就越有过热击穿的可能,造成局部的损坏。

如果VGS从RDS(ON)的负温度系数区域到达RDS(ON)的正温度系数区域时没有形成局部的损坏,此时,在RDS(ON)的正温度系数区域,晶胞单元的温度越高,所流过的电流减小,晶胞单元温度和电流形成负反馈,晶胞单元自动均流,达到平衡。

相应的,在MOSFET关断过程中,离栅极管脚距离远的晶胞单元的电压降低得慢,容易在RDS(ON)的负温度系数区域形成局部的过热而损坏。

因此,加快MOSFET的开通和关断速度,使MOSFET快速通过RDS(ON)的负温度系数区域,就可以减小局部能量的聚集,防止晶胞单元局部的过热而损坏。

基于上面的分析,可以得到:当MOSFET局部损坏时,若损坏的热点位于离栅极管脚距离近的区域,则可能是开通速度太慢产生的局部的损坏;若损坏的热点位于离栅极管脚距离远的区域,则可能是关断速度太慢产生的局部损坏。

在栅极和源极加一个大的电容,在开机的过程中,就会经常发生MOSFET损坏的情况,正是由于额外的大的输入电容造成晶胞单元VGS电压更大的不平衡,从而更容易导致局部的损坏。

结论

1.MOSFET在开通的过程中,RDS(ON)从负温度系数区域向正温度系数区域转化;在其关断的过程中,RDS(ON)从正温度系数区域向负温度系数区域过渡。

2.MOSFET串联等效的栅极和源极电阻的分压作用和栅极电容的影响,造成晶胞单元的VGS的电压不一致,从而导致各个晶胞单元电流不一致,在开通和关断的过程中形成局部过热损坏。

3.快速开通和关断MOSFET,可以减小局部能量的聚集,防止晶胞单元局部的过热而损坏。开通速度太慢,距离栅极管脚较近的区域局部容易产生局部过热损坏,关断速度太慢,距离栅极管脚较远的区域容易产生局部过热损坏。
关键字:MOSFET  RDS  温度系数 编辑:探路者 引用地址:理解功率MOSFET的RDS(ON)温度系数特性

上一篇:如何选择电容器实现高性能的EMI滤波
下一篇:薄膜电阻器提供不渗透硫的解决方案

推荐阅读最新更新时间:2023-10-17 15:44

Diodes新型 MOSFET离板高度减半
Diodes Incorporated 推出一系列采用薄型DFN2020-6封装的高效率N通道及P通道MOSFET。DFN2020H4封装的DMP2039UFDE4,离板高度只有0.4毫米,占板面积只有四平方毫米,是一款额定电压为 -25V的P通道器件,体积较同类器件纤薄50%。同系列另一采用DFN2020E封装的MOSFET则具有0.5毫米离板高度,较其他一般离板高度为0.6毫米的MOSFET纤薄20%。 DMP2039UFDE4针对负载开关应用,为电路设计人员提供3kV的电路保护,以免受人体本身的静电放电所影响。这些最新推出的MOSFET拥有低典型RDS(on) 的特性,例如 -12V P通道的DMP1022UFDE,在
[电源管理]
IGBT在不间断电源中的应用
    1. 引言     在UPS 中使用的功率器件有双极型功率晶体管、功率MOSFET、可控硅和IGBT,IGBT 既有功率MOSFET 易于驱动,控制简单、开关频率高的优点,又有功率晶体管的导通电压低,通态电流大的优点、使用IGBT 成为UPS 功率设计的首选,只有对IGBT的特性充分了解和对电路进行可靠性设计,才能发挥IGBT 的优点。本文介绍UPS 中的IGBT 的应用情况和使用中的注意事项。     2. IGBT 在UPS 中的应用情况     绝缘栅双极型晶体管(IGBT)是一种MOSFET 与双极晶体管复合的器件。据东芝公司资料,1200V/100A 的IGBT 的导通电阻是同一耐压规格的功率MOSFET
[电源管理]
IGBT在不间断电源中的应用
在工业高频双向PFC电力变换器中使用SiC MOSFET的优势
随着汽车电动化推进,智能充电基础设施正在迅速普及,智能电网内部的V2G车辆给电网充电应用也是方兴未艾,越来越多的应用领域要求有源前端电力变换器具有双向电流变换功能。本文在典型的三相电力应用中分析了SiC功率MOSFET在高频PFC变换器中的应用表现,证明碳化硅电力解决方案的优势,例如,将三相两电平全桥(B6)变换器和NPC2三电平(3L-TType)变换器作为研究案例,并与硅功率半导体进行了输出功率和开关频率比较。 前言 随着汽车电动化推进,智能充电基础设施正在迅速普及,智能电网内部的V2G车辆给电网充电应用也是方兴未艾,越来越多的应用领域要求有源前端电力变换器具有双向电流变换功能。本文在典型的三相电力应用中分析了SiC功率M
[嵌入式]
在工业高频双向PFC电力变换器中使用SiC <font color='red'>MOSFET</font>的优势
ST新的MOSFET晶体管技术/封装解决方案重新定义功率能效
中国,2016年5月11日 横跨多重电子应用领域、全球领先的半导体供应商意法半导体(STMicroelectronics,简称ST;纽约证券交易所代码:STM)最新的MDmeshTM DM2 N-通道功率MOSFET为低压电源设计人员提高计算机、电信网络、工业、消费电子产品的能效创造新的机会。 全世界的人都在获取、保存、分享大量的电子书、视频、相片和音乐文件,数据使用量连续快速增长,运行云计算技术的服务器集群、互联互通的电信网络、数据用户终端设备的耗电量也随之越来越高,人们对这些设备能耗最小化的需求越来越多。为应对这一挑战,意法半导体整合最先进的功率晶体结构和尺寸紧凑且高热效率的PowerFLAT 8x8
[电源管理]
ST新的<font color='red'>MOSFET</font>晶体管技术/封装解决方案重新定义功率能效
倡导“源极底置”新理念 ,英飞凌推出OptiMOS™25 V功率MOSFET
英飞凌科技股份公司通过专注于解决当前电源管理设计面临的挑战,来实现系统创新和组件水平的改进。“源极底置”是符合行业标准的全新封装概念。英飞凌已推出第一批基于该封装概念的功率MOSFET,它们是采用PQFN 3.3x3.3 mm封装的OptiMOSTM 25 V 功率MOSFET。该器件在MOSFET性能方面树立了新的行业标杆,不仅通态电阻(RDS(on))降低,还具有业内领先的热性能指标。该产品适合的应用非常广泛,包括马达驱动、SMPS(包括服务器、电信和OR-ing)和电池管理等等。 新封装概念将源极(而非传统的漏极)与导热垫相连。除了实现新的PCB布局,这还有助于实现更高的功率密度和性能。目前推出的两个型号占板面积不同,它
[电源管理]
同类最佳的超级结MOSFET和具成本优势的IGBT用于电动汽车充电桩
插电式混合动力/电动汽车(xEV)包含一个高压电池子系统,可采用内置的车载充电器(OBC)或外部的充电桩进行充电。充电(应用)要求在高温环境下具有高电压、高电流和高性能,开发高能效、高性能、具丰富保护功能的充电桩对于实现以尽可能短的充电时间续航更远的里程至关重要。常用的半导体器件有IGBT、超结MOSFET和碳化硅(SiC)。安森美半导体为电动汽车OBC和直流充电桩提供完整的系统方案,包括通过AEC车规认证的超级结MOSFET、IGBT、门极驱动器、碳化硅(SiC)器件、电压检测、控制产品乃至电源模块等,支持设计人员优化性能,加快开发周期。本文将主要介绍用于电动汽车直流充电桩的超级结MOSFET和具成本优势的IGBT方案。
[汽车电子]
同类最佳的超级结<font color='red'>MOSFET</font>和具成本优势的IGBT用于电动汽车充电桩
东芝推出600V系统超级结MOSFET DTMOSIV高速二极管系列
RON较现有产品降低了30%,反向恢复时间为现有产品的三分之一 东京--(美国商业资讯)--东芝公司(Toshiba Corporation)(TOKYO: 6502)推出了基于第四代600V系统超级结(super junction)MOSFET“DTMOSIV”系列的高速二极管。新系列采用最新的单外延工艺打造,其每单位面积导通电阻(RON•A)较现有产品降低了约30%(注1),处于业界领先水平。(注2)另外,高速寄生二极管的反向恢复时间约为现有产品的三分之一(注3),降低了损耗并有助于提高功效。 (注1) 与此前的“DTMOSIII”系列比较。东芝数据。 (注2) 截至2013年4月2日。东芝数据。 (注3) 与现有的“
[电源管理]
东芝推出600V系统超级结<font color='red'>MOSFET</font> DTMOSIV高速二极管系列
德州仪器推出针对服务器与DC/DC 电源系统的4A 高速MOSFET 驱动器
8引脚电源栅极驱动器以每相位40A电流在7V至8V电压范围内实现业界最高效率 2006 年 7 月 20 日,北京讯 日前,德州仪器 (TI) 宣布推出一款针对 N 通道互补驱动功率 MOSFET 的 4A 高速同步驱动器。该款 2MHz 驱动器简化了大电流单相与多相应用中的电源设计,如电压稳压器模块 (VRM) 设计、笔记本电脑、带有二次侧同步整流器的隔离式电源以及对效率要求极高的 DC/DC 转换器等。更多详情,敬请参见: www.ti.com.cn/ tps28225 。 TI 的 TPS28225 驱动器以 4.5V 至 8.8V 电压控制 MOSFET 栅极,
[新品]
小广播
热门活动
换一批
更多
最新电源管理文章
更多精选电路图
换一换 更多 相关热搜器件
更多每日新闻
随便看看
电子工程世界版权所有 京B2-20211791 京ICP备10001474号-1 电信业务审批[2006]字第258号函 京公网安备 11010802033920号 Copyright © 2005-2024 EEWORLD.com.cn, Inc. All rights reserved